Math, asked by vidhiyadav1331, 10 months ago

The sum of the digits of two digit is 18. If the digits are reversed the number is 126 more than the

original. Find the number.​

Answers

Answered by aadityasuman860
1

Answer:

I don't know the answer buddy 123 sorry

Answered by Delta13
10

\large{\underline{\boxed{\text{Given:}}}} </p><p>

The sum of the digits of a two digit number = 18

If the digits are reversed the number = 126 more than the original number.

\large{\underline{\boxed{\text{To find:}}}}</p><p>

The original number

\large{\underline{\boxed{\text{Solution:}}}}</p><p>

Let the digit at tens place be x

and the digit at ones place be y

This implies

The original number = 10x + y

According to the question

 \textsf{x + y = 18}

Now,

when the digits are reversed

Number = 10y + x

So,

According to the question

 \textsf{10y + x = 126 + (10x + y)}

 \textsf{10y + x - (10x + y) = 126}

 \textsf{10y + x - 10x - y = 126} \\  \\  \textsf{9y - 9x = 126} \\  \\  \textsf{9(y - x) = 126} \\  \\  \textsf{y - x} =  \frac{126}{9}

 \implies \textsf{y - x = 14}

It can be written as

{ - (y -x = 14) }

 \textsf{x - y =  - 14}

Now we have,

 \textsf{x + y = 18} \\   \textsf{x - y = 14}

Using Elimination Method

 \textsf{ x +  {y} = 18} \\   \textsf{x -  {y} =  - 14}\\ \\\textsf{y will be cancelled}

  \implies \textsf{2x = 4} \\ \\  \implies \textsf{x} =  \frac{4}{2}   \\   \\ \implies \boxed{ \textsf{ \green{x = 2}}}

Putting the value of x in (x +y = 18)

 \implies \textsf{2+ y = 18} \\  \\  \implies \textsf{y = 18 - 2} \\  \\  \implies \boxed{ \textsf{ \green{y = 16}}}

Putting the values to get original number

 \textsf{Original number = 10(2) + 16 } \\  \\  \textsf{Original number = 20 + 16 } \\  \\  \textsf{Original number } = \underline{\boxed{\red{36}}}

Hope it helps you

Similar questions