The sum of the digits of two digit
number is 8. The number obtained by
interchanging the digit exceeds the given
number by 18. Find the given number.
Answers
Answer:
35
Step-by-step explanation:
Given :
The sum of the digits of two digit number is 8.
The number obtained by interchanging the digit exceeds the given
number by 18.
Find the given number.
Solution :
Let the digits be x y
i.e., = 10x + y,.
Statement 1 :
The sum of the digits of two digit number is 8.
⇒ x + y = 8 ...(i)
Statement 2 :
The number obtained by interchanging the digit exceeds the given
number by 18.
Original number = 10x + y
When the digits gets interchnged,
It will be , 10y + x,.
It exceeds by 18
⇒ (10y + x) = (10x + y) + 18
⇒ (10y + x) - (10x + y) = 18
⇒ 10y + x - 10x - y = 18
⇒ 10y - y + x - 10x = 18
⇒ 9y - 9x = 18
⇒ 9 × (y - x) = 9 × 2
⇒ y - x = 2
By multiplying both the sides , by (-1),
We get,
⇒ -1 × (y - x) = -1 × (2)
⇒ - y + x = -2
⇒ x - y = -2 ...(ii)
By adding (i) & (ii),
We get,
⇒ (i) + (ii)
⇒ (x + y) + (x - y) = 8 + (-2)
⇒ x + x + y - y = 8 - 2
⇒ 2x = 6
⇒ x = 3,.
By substituting the value of x, in (i),
⇒ x + y = 8
⇒ 3 + y = 8
⇒ y = 8 - 3
⇒ y = 5,.
The given number is 10x + y = 3 × 10 + = 30 + 5 = 35