Math, asked by abhishekp302007, 8 months ago

the sum of the digitsof a 2 digits number is 12 of the new number reversing the digits greater than the original number 18 . find the original number.​

Answers

Answered by varadad25
133

Answer:

The original number is 57.

Step-by-step-explanation:

Let the digit at tens place be x.

And the digit at the units place be y.

∴ Original number = xy

∴ Original number = 10x + y

The number obtained by reversing the digits = yx

∴ The number obtained by reversing the digits = 10y + x

Now,

From the first condition,

Sum of digits is 12.

∴ x + y = 12

x = 12 - y - - - ( 1 )

From the second condition,

Number obtained by reversing digits = Original number + 18

∴ 10y + x = 10x + y + 18

⇒ 10y + x - 10x - y = 18

⇒ 10y - y - 10x + x = 18

⇒ 9y - 9x = 18

⇒ 9y - 9 ( 12 - y ) = 18 - - - [ From ( 1 ) ]

⇒ 9y - 108 + 9y = 18

⇒ 9y + 9y = 18 + 108

⇒ 18y = 126

⇒ y = 126 ÷ 18

y = 7

Now, by substituting y = 8 in equation ( 1 ), we get,

x = 12 - y - - - ( 1 )

⇒ x = 12 - y

⇒ x = 12 - 7

x = 5

Now,

Original number = 10x + y

⇒ Original number = 10 × 5 + 7

⇒ Original number = 50 + 7

Original number = 57

∴ The original number is 57.

─────────────────────

Verification:

The original number = 57

∴ The number obtained by reversing the digits = 75

From the condition,

75 = 57 + 18

75 = 75

∴ LHS = RHS

Hence verified!

Answered by soujanya201074
0

Answer:

The original number is 57.

Step-by-step-explanation:

Let the digit at tens place be x.

And the digit at the units place be y.

∴ Original number = xy

∴ Original number = 10x + y

The number obtained by reversing the digits = yx

∴ The number obtained by reversing the digits = 10y + x

Now,

From the first condition,

Sum of digits is 12.

∴ x + y = 12

⇒ x = 12 - y - - - ( 1 )

From the second condition,

Number obtained by reversing digits = Original number + 18

∴ 10y + x = 10x + y + 18

⇒ 10y + x - 10x - y = 18

⇒ 10y - y - 10x + x = 18

⇒ 9y - 9x = 18

⇒ 9y - 9 ( 12 - y ) = 18 - - - [ From ( 1 ) ]

⇒ 9y - 108 + 9y = 18

⇒ 9y + 9y = 18 + 108

⇒ 18y = 126

⇒ y = 126 ÷ 18

⇒ y = 7

Now, by substituting y = 8 in equation ( 1 ), we get,

x = 12 - y - - - ( 1 )

⇒ x = 12 - y

⇒ x = 12 - 7

⇒ x = 5

Now,

Original number = 10x + y

⇒ Original number = 10 × 5 + 7

⇒ Original number = 50 + 7

⇒ Original number = 57

∴ The original number is 57.

─────────────────────

Verification:

The original number = 57

∴ The number obtained by reversing the digits = 75

From the condition,

75 = 57 + 18

⇒ 75 = 75

∴ LHS = RHS

Hence verified!

Similar questions