Math, asked by adithya382006, 6 hours ago

The sum of the exponents of the prime factors in the prime factorization of 1764 is
(a) 3
(b) 4.
(c) 5
(d) 6​

Answers

Answered by MaheswariS
14

\underline{\textbf{Given:}}

\textsf{1764}

\underline{\textbf{To find:}}

\textsf{The sum of the exponents of the prime factors in the }

\textsf{prime factorization of 1764}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{1764=2{\times}882}

\mathsf{1764=2{\times}2{\times}441}

\mathsf{1764=2{\times}2{\times}3{\times}147}

\mathsf{1764=2{\times}2{\times}3{\times}3{\times}49}

\mathsf{1764=2{\times}2{\times}3{\times}3{\times}7{\times}7}

\implies\mathsf{1764=2^2{\times}3^2{\times}7^2}

\mathsf{Now,}

\textsf{Sum of the exponents}

\mathsf{=2+2+2}

\mathsf{=6}

\therefore\textbf{Sum of the exponents of the prime factors is 6}

\underline{\textbf{Answer:}}

\mathsf{option\;(d)\;is\;correct}

Answered by DsDhruv786
1

Answer:6 (d)

Step-by-step explanation:The prime factorization for 1764 is 2^2*3^2*7^2

So if we add the exponents (or count the factors)we will get the ans 6...

Similar questions