Math, asked by Vinnaitsme777, 1 year ago

the sum of the first 20 terms of series 1+3/2+7/4+15/8+31/16+...... is

Attachments:

Answers

Answered by chemistrywala
0
a= 1 ,, d= 3/2-1= -1/2 ,,,, find S20

Vinnaitsme777: please can u find
Vinnaitsme777: send me the full answer please
chemistrywala: -225
Vinnaitsme777: what ??
Vinnaitsme777: its wrong
Vinnaitsme777: answer is 38+1/2^19
Answered by pinquancaro
2

Answer:

\sum(1+\frac{3}{2}+\frac{7}{4}+\frac{15}{8}+\frac{31}{16}+...)=38.0000019073                

Step-by-step explanation:

Given : Series 1+\frac{3}{2}+\frac{7}{4}+\frac{15}{8}+\frac{31}{16}+...

To find : The sum of first 20 terms of series ?

Solution :

Series 1+\frac{3}{2}+\frac{7}{4}+\frac{15}{8}+\frac{31}{16}+...

We re-write the series as,

=1+(2-\dfrac{1}{2^1})+(2-\dfrac{1}{2^{2}})+(2-\dfrac{1}{2^{3}})+....+(2-\dfrac{1}{2^{19}})

=1+2\times19-\dfrac{1}{2}(1+\dfrac{1}{2}+\dfrac{1}{2^{2}}+....+\dfrac{1}{2^{18} })

Now, The bracket form a geometric finite series.

The formula of sum of finite geometric series is  

S_n=a(\frac{1-r^n}{1-r})

Here, r=\frac{1}{2}, a=\frac{1}{2}

Applying,

=1+38-\dfrac{1}{2}(\dfrac{1-\dfrac{1}{2^{19}}}{1-\dfrac{1}{2}})

=39-\frac{1}{2}(\dfrac{2^{19}-1 }{2^{17}})

=38.0000019073

Therefore, The sum of the first 20 terms of series is

\sum(1+\frac{3}{2}+\frac{7}{4}+\frac{15}{8}+\frac{31}{16}+...)=38.0000019073

Similar questions