Math, asked by prashantbara2707, 11 months ago

The sum of the first 20 terms of the series 1/5*6+1/6*7+1/7*8+......is

Answers

Answered by lublana
8

\frac{1}{5\times 6}+\frac{1}{6\times 7}+\frac{1}{7\times 8}+...upto\;20\;terms=\frac{16}{105}

Step-by-step explanation:

Series

\frac{1}{5\times 6}+\frac{1}{6\times 7}+\frac{1}{7\times 8}+...upto\;20\;terms

n=20

a_1=\frac{1}{5\times 6}=\frac{1}{5}-\frac{1}{6}

a_2=\frac{1}{6\times 7}=\frac{1}{6}-\frac{1}{7}

a_3=\frac{1}{7\times 8}=\frac{1}{7}-\frac{1}{8}

:

:

:

a_{n-1}=\frac{1}{(n-1)n}=\frac{1}{n-1}-\frac{1}{n}

a_n=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}

Substitute n=20

a_{19}=\frac{1}{19}-\frac{1}{20}

a_{20}=\frac{1}{20}-\frac{1}{21}

Adding all term

a_1+a_2+a_3+...+a_{20}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...-\frac{1}{20}+\frac{1}{20}-\frac{1}{21}

a_1+a_2+a_3+...+a_{20}=\frac{1}{5}-\frac{1}{21}

a_1+a_2+a_3+...+a_{20}=\frac{21-5}{105}=\frac{16}{105}

#Learns more:

https://brainly.in/question/288325:Answered by Samrat

Similar questions