Math, asked by lopa7223, 6 hours ago

The sum of the first 25 terms of an A.P. is 1700, while its common difference is 6. What is the 31st

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

  • The sum of the first 25 terms of an A.P. is 1700.

  • It's common difference is 6.

Let assume that

  • First term of an AP is a

  • Common difference of an AP is d, so d = 6

  • Number of terms is n, so n = 25

  • Sₙ is the sum of n terms of AP, so Sₙ = 1700

We know that

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

So, on substituting the values, we get

\rm :\longmapsto\:1700 = \dfrac{25}{2} \bigg(2a + (25 - 1) \times 6\bigg)

\rm :\longmapsto\:68 = \dfrac{1}{2} \bigg(2a + (24) \times 6\bigg)

\rm :\longmapsto\:68 = a + 72

\rm \implies\:\boxed{\tt{ a \:  =  \:  -  \: 4}}

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

\rm :\longmapsto\: a_{31} = a + (31 - 1)d

\rm :\longmapsto\: a_{31} = a + 30d

\rm :\longmapsto\: a_{31} =  - 4 + 30 \times 6

\rm :\longmapsto\: a_{31} =  - 4 + 180

\rm \implies\:\boxed{\tt{ \: a_{31} \:  = \:   176 \: }}

Answered by EmperorSoul
9

\large\underline{\sf{Solution-}}

Given that

The sum of the first 25 terms of an A.P. is 1700.

It's common difference is 6.

Let assume that

First term of an AP is a

Common difference of an AP is d, so d = 6

Number of terms is n, so n = 25

Sₙ is the sum of n terms of AP, so Sₙ = 1700

We know that

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

So, on substituting the values, we get

\rm :\longmapsto\:1700 = \dfrac{25}{2} \bigg(2a + (25 - 1) \times 6\bigg)

\rm :\longmapsto\:68 = \dfrac{1}{2} \bigg(2a + (24) \times 6\bigg)

\rm :\longmapsto\:68 = a + 72

\rm \implies\:\boxed{\tt{ a \:  =  \:  -  \: 4}}

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

\rm :\longmapsto\: a_{31} = a + (31 - 1)d

\rm :\longmapsto\: a_{31} = a + 30d

\rm :\longmapsto\: a_{31} =  - 4 + 30 \times 6

\rm :\longmapsto\: a_{31} =  - 4 + 180

\rm \implies\:\boxed{\tt{ \: a_{31} \:  = \:   176 \: }}

Similar questions