Math, asked by sumithguttedar13579, 3 months ago

the sum of the first 7 term of ap is 140 and the sum of the next 7 terms of the same ap is 385 then find the ap​

Answers

Answered by MaheswariS
13

\textbf{Given:}

\textsf{Sum of first 7 terms of A.P is 140 and}

\textsf{sum of the next 7 terms of the same A.P is 385}

\textbf{To find:}

\textsf{The A.P}

\textbf{Solution:}

\textsf{Consider,}

\textsf{Sum of first 7 terms is 140}

\mathsf{S_7=140}

\textsf{Using the formula,}

\boxed{\mathsf{S_n=\dfrac{n}{2}[2a+(n-1)d]}}

\implies\mathsf{\dfrac{7}{2}[2a+6d]=140}

\implies\mathsf{\dfrac{7}{2}{\times}2[a+3d]=140}

\implies\mathsf{7[a+3d]=140}

\implies\mathsf{a+3d=20}_______(1)

\textsf{Also, Sum of first 14 terms=140+385}

\mathsf{S_{14}=525}

\implies\mathsf{\dfrac{14}{2}[2a+13d]=525}

\implies\mathsf{7[2a+13d]=525}

\implies\mathsf{2a+13d=75}_______(2)

\mathsf{(1){\times}2-(2)\implies}

\mathsf{2a+6d=40}

\mathsf{2a+13d=75}

\mathsf{-7d=-35}

\implies\boxed{\mathsf{d=5}}

\textsf{Put d=5 in (1), we get}

\mathsf{a+3(5)=20}

\mathsf{a+15=20}

\mathsf{a=20-15}

\implies\boxed{\mathsf{a=5}}

\therefore\textbf{The required A.P is}

\mathsf{5,10,15,,,,,,,,,}

Similar questions