Math, asked by princess9232, 1 month ago

the sum of the first 7 terms of an arithmetic progression is 140 and the sum of the next 7 terms of the same progression is 385 then find the arithmetic progression​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Let's solve the problem now!!

↝ Let assume that

  • First term of an AP is a

  • Common difference of an AP is d.

According to statement,

↝ Sum of first 7 terms of anAP = 140.

\rm :\longmapsto\:S_7 = 140

\rm :\longmapsto\:\dfrac{7}{2}\bigg(2a + (7 - 1)d\bigg) = 140

\rm :\longmapsto\:2a + 6d = 40

\rm :\longmapsto\:a + 3d = 20 -  -  - (1)

According to statement again,

↝ Sum of next 7 terms be 385.

Since, Sum of first 7 terms is 140.

So, it implies,

↝ Sum of first fourteen terms is 525.

\rm :\longmapsto\:S_{14} = 525

\rm :\longmapsto\:\dfrac{14}{2}\bigg(2a + (14 - 1)d\bigg) = 525

\rm :\longmapsto\:2a + 13d = 75

\rm :\longmapsto\:2(20 - 3d) + 13d = 75 \:  \:  \:  \:  \:  \{using \: (1) \}

\rm :\longmapsto\:40 - 6d + 13d = 75

\rm :\longmapsto\:7d = 75 - 40

\rm :\longmapsto\:7d = 35

\bf\implies \:d = 5

On substituting the value of d, in equation (1), we get

\rm :\longmapsto\:a + 3 \times 5 = 20

\rm :\longmapsto\:a + 15 = 20

\bf\implies \:a = 5

Hence,

  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf{ \: AP  \: series  \: is  \: 5,  \: 10,  \: 15,  \: 20, -  -  -  -  }}}

Additional Information :-

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Similar questions