Math, asked by anshika0521, 1 month ago

the sum of the first four terms of an A.P. is 56. The sum of the last four terms is112. If its first term is 11. then find the number of terms.

pls some this answer correctly.
no irrelevant answers​

Answers

Answered by 110030
1

Answer:

Let the A.P. be a,a+d,a+2d,a+3d,...a+(n−2)d,a+(n−1)d.

Sum of first four terms =a+(a+d)+(a+2d)+(a+3d)=4a+6d

Sum of last four terms

=[a+(n−4)d]+[a+(n−3)d]+[a+(n−2)d]+[a+(n−1)d]⇒=4a+(4n−10)d

According to the given condition, 4a+6d=56

⇒4(11)+6d=56[Sincea=11(given)]

⇒6d=12⇒d=2

∴4a+(4n−10)d=112

⇒4(11)+(4n−10)2=112

⇒(4n−10)2=68

⇒4n−10=34

⇒4n=44⇒n=11

Thus the number of terms of A.P. is 11.

Step-by-step explanation:

if it's helpful then mark me as brainlist.

Similar questions