Math, asked by salonisg96, 2 months ago

the sum of the first n terms of an arithmetic terms of an arithmetic sequence is Sn=bn-2n^2. find b if the tenth term is -16​

Answers

Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Thus,

According to statement,

\rm :\longmapsto\:S_n = bn -  {2n}^{2}

\rm :\longmapsto\:\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg) = n(b - 2n)

\rm :\longmapsto\:2a + nd - d = 2b - 4n

\rm :\longmapsto\:(2a - d) + nd = 2b - 4n

On comparing, we get

\rm :\longmapsto\:d = -  \:  4

and

\rm :\longmapsto\:2a - d = 2b

\rm :\longmapsto\:2a  + 4 = 2b

\rm :\longmapsto\:a  + 2 = b

\rm :\longmapsto\:a= b - 2

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

According to statement,

\rm :\longmapsto\:a_{10} =  -  \: 16

\rm :\longmapsto\:a + (10 - 1)d=  -  \: 16

\rm :\longmapsto\:a + 9d=  -  \: 16

On substituting the values of a and d, we get

\rm :\longmapsto\:b - 2 + 9( - 4)=  -  \: 16

\rm :\longmapsto\:b - 2  - 36=  -  \: 16

\rm :\longmapsto\:b - 38=  -  \: 16

\rm :\longmapsto\:b =  -  \: 16 + 38

\bf\implies \:b = 22

Similar questions