the sum of the first p, q, r terms of an AP are a, b, c respectively. prove that
a/p(q-r) + b/q(r-p) + c/r(p-q) =0
Answers
Answered by
0
· (q - r) + · (r - p) + · (p - q) = 0, is is proved.
Step-by-step explanation:
Let first term = x and common difference = d
∴ = ·{2x + (p - 1)d}
⇒ a = ·{2x + (p - 1)d}
⇒ = x + (p -1)· ..... (1)
Similarly,
= x + (q -1)· ..... (2)
= x + (r -1)· ..... (3)
Multipying (1) × (q - r), (2) × (r - p) and (3) × (p - q) and adding them, we get
· (q - r) + · (r - p) + · (p - q) = x·(q - r + r - p + p - q) + tex]\dfrac{d}{2}[/tex]·{(p - 1)(q - r) + (q - 1)(r - p) + (r - 1)(p - q) }
= x·(0) + tex]\dfrac{d}{2}[/tex]·{pq - pr - q + r + qr - qp - r + p + rp - rq - p + q }
= x·(q - r + r - p + p - q) + tex]\dfrac{d}{2}[/tex]· (0)
= 0
Hence, it is proved.
Similar questions