Math, asked by RamyaRajanaik, 1 month ago

the sum of the first seven terms of an arithmetic progression is 140 and the sum of the next 7 terms of the same progression is 385 then find the arithmetic progression​

Answers

Answered by TheMoonlìghtPhoenix
139

Step-by-step explanation:

Given that the sum of first 7 terms is 140.

We can say that:-

\sf{S_7 = \dfrac{7}{2}(2a + (7-1) \times d)}

\sf{140= \dfrac{7}{2}(2a + 6d)}

\sf{\dfrac{140 \times 2}{7}= 2a + 6d}

\sf{20 \times 2 = 2a + 6d}

\sf{ 40 = 2a + 6d}

\sf{20 = a + 3d}

\sf{20 - 3d = a } -------------(1)

Now, sum of the next 7 terms of the same progression is 385. So, we can say that the sum is 14.

\sf{S_{14} = \dfrac{14}{2}(2a + (14-1) \times d)}

Now, 140 + 385 = 525

\sf{525 = 7(2a + 13d)}

\sf{\dfrac{525}{7} = 2a + 13d}

\sf{75= 2a + 13d}

Substitute the value of (1) here,

\sf{75= 2(20 - 3d) + 13d}

\sf{75= 40 - 6d + 13d}

\sf{75= 40 + 7d}

\sf{75 - 40=  7d}

\sf{ 35=  7d}

\sf{ 5 = d}

Finding the a of the term,

\sf{20 - 3d = a }

\sf{20 - 15= a }

\sf{ 5 = a }

\sf{a_n = 5 + 3 (5)} = 75.

So, the sequence will be 5, 10, 15 ... till 75.

Answered by kailashmannem
100

 \Large{\bf{\green{\mathfrak{\dag{\underline{\underline{Given:-}}}}}}}

  • The sum of the first seven terms of an arithmetic progression is 140 and the sum of the next 7 terms of the same progression is 385.

 \Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{To \: Find:-}}}}}}}

  • The Arithmetic progression

\Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Solution:-}}}}}}}

According to the question,

  • The sum of the first 7 terms of an arithmetic progression is 140.

We know that,

 \boxed{\pink{\sf S_n \: = \: \dfrac{n}{2} (2a \: + \: (n \: - \: 1) d)}}

  • Here,

  • n = 7

  •  \sf S_7 = 140

Subsituting the values,

  •  \sf 140 \: = \: \dfrac{7}{2} (2a \: + \: (7 \: - \: 1) d)

  •  \sf 140 \: = \: \dfrac{7}{2} (2a \: + \: 6d)

  •  \sf 140 \: * \: \dfrac{2}{7} \: = \:2a \: + \: 6d

  •  \sf \cancel{140} \: * \: \dfrac{2}{\cancel{7}} \: = \:2a \: + \: 6d

  •  \sf 20 \: * \: \dfrac{2}{1} \: = \: 2a \: + \: 6d

  •  \sf 20 \: * \: 2 \: = \: 2a \: + \: 6d

  •  \sf 40 \: = \: 2a \: + \: 6d

  •  \sf 40 \: = \: 2(a \: + \: 3d)

  •  \sf \dfrac{40}{2} \: = \: a \: + \: 3d

  •  \sf \dfrac{\cancel{40}}{\cancel{2}} \: = \: a \: + \: 3d

  •  \sf 20 \: = \: a \: + 3d

  •  \sf 20 \: - \: 3d \: = \: a \: \longrightarrow \boxed{1}

Now,

  • The sum of the next 7 terms of the same progression is 385.

We know that,

 \boxed{\pink{\sf S_n \: = \: \dfrac{n}{2} (2a \: + \: (n \: - \: 1) d)}}

  • Here,

  • n = 14

  • Here, it is asked as the next progression,

  • So, the sum of first 7 terms progression and the sum of next 7 terms progression must be added.

  •  \sf S_{14} = 140 + 385

  •  \sf S_{14} = 525

Subsituting the values,

  •  \sf 525 \: = \: \dfrac{14}{2} (2a \: + \: (14 \: - \: 1) d)

  •  \sf 525 \: = \: \dfrac{\cancel{14}}{\cancel{2}} (2a \: + \: 13d)

  •  \sf 525 \: = \: 7 (2a \: + \: 13d)

  •  \sf \dfrac{525}{7} \: = \: 2a \: + \: 13d

  •  \sf \dfrac{\cancel{525}}{\cancel{7}} \: = \: 2a \: + \: 13d

  •  \sf 75 \: = \: 2a \: + \: 13d

Substituting  \boxed{1} in the above equation,

  •  \sf 75 \: = \: 2a \: + \: 13d

  •  \sf 75 \: = \: 2(20 \: - \: 3d) \: + \: 13d

  •  \sf 75 \: = \: 40 \: - \: 6d \: + \: 13d

  •  \sf 75 \: - \: 40 \: = \: 13d \: - \: 6d

  •  \sf 35 \: = \: 13d \: - \: 6d

  •  \sf 35 \: = \: 7d

  •  \sf \dfrac{35}{7} \: = \: d

  •  \sf \dfrac{\cancel{35}}{\cancel{7}} \: = \: d

Therefore,

  • d = 5

Substituting d = 5 in  \boxed{1} ,

  • 20 - 3d = a

  • 20 - 3 * 5 = a

  • 20 - 15 = a

  • 5 = a

Therefore,

  • a = 5

Now,

  • Arithmetic progression =

a = 5

 \sf a_2 = a + d = 5 + 5 = 10

 \sf a_3 = a + 2d = 5 + 2 * 5 = 5 + 10 = 15

 \sf a_4 = a + 3d = 5 + 3 * 5 = 5 + 15 = 20

Therefore,

  •  \underline{\boxed{\therefore{\purple{\sf The \: Arithmetic \: Progression \: = \: 5, \: 10, \: 15, \: 20, \: ...}}}}
Similar questions