Math, asked by sreenukshatriya9960, 9 months ago

The sum of the first six terms of an Ap is 42.the ratio of its 10th term to its 30th term is 1:3.find the first term of an Ap

Answers

Answered by TheVenomGirl
13

AnSwer:-

  • Let a be the first term and d be the common difference.

 \longmapsto \sf \: S _{6} = 42

 \sf \longmapsto \:  \dfrac{6}{2}(2a + 5d)  = 42 \\ \\  \sf \longmapsto \: 2a + 5d = 14 \\  \\  \sf \longmapsto \: 2a = 14 - 5d \\  \\  \sf \longmapsto \:  \dfrac{a _{10} }{a _{30}}  =  \dfrac{1}{3}  \\  \\ \sf \longmapsto \: \dfrac{a + 9d}{a + 29d}  =  \dfrac{1}{3}  \\  \\ \sf \longmapsto \: \:  \dfrac{2a + 18d}{2a + 58d}  =  \dfrac{1}{3} \\  \\ \sf \longmapsto \:  \dfrac{14 - 5d + 18d}{15 - 5d + 58d}  =  \dfrac{1}{3} ...........(from \: 1) \\  \\ \sf \longmapsto \: \dfrac{14 + 13d}{14 + 53d}  =  \dfrac{1}{3}  \\  \\ \sf \longmapsto \:42 + 39d = 14 + 32d \\  \\ \sf \longmapsto \:28= 14d \\  \\ \sf \longmapsto \:d = 2 \\  \\   \sf \: from \: (1)  \\  \\ \sf \longmapsto \:2a + 5d = 14 \\  \\ \sf \longmapsto \:2a + 5(2) =  14 \\  \\ \sf \longmapsto \:2a + 10 = 14 \\  \\ \sf \longmapsto \:2a = 14 - 10 \\  \\ \sf \longmapsto \:2a = 4 \\  \\ \sf \longmapsto \:a = 2

Now,

\sf \longmapsto \:a _{13} = 2  + 12 \times 2 \\  \\ \sf \longmapsto \:a _{13} = 14 \times 2 \\  \\ \sf \longmapsto \:a _{13} = 26

Similar questions