the sum of the first three consecutive terms of an AP is 9 and sum of their squares is 35 then sum to n terms of the series is
Answers
Answered by
8
HELLO DEAR,
let the three consecutive no. be (a-d),a,(a+d)
given that:-
a-d+a+a-d=9
3a=9
a=9/3
a=3------------------(1)
and also
given that:-
(a-d)²+a²+(a+d)²=35
(3-d)²+3²+(3+d)²=35 -----using (1)
9 + d² - 6d + 9 + 9 + d² + 6d=35
27+ 2d²=35
2d² =35-27
2d² = 8
d² =4
d²=+- 2
when d=2
we get,
(3-2),3,(3+2)
=>1,3,5
then the
when d= -2
(3+2),3,(3-2)
=>5,3,1
then the
I HOPE ITS HELP YOU DEAR,
THANKS
let the three consecutive no. be (a-d),a,(a+d)
given that:-
a-d+a+a-d=9
3a=9
a=9/3
a=3------------------(1)
and also
given that:-
(a-d)²+a²+(a+d)²=35
(3-d)²+3²+(3+d)²=35 -----using (1)
9 + d² - 6d + 9 + 9 + d² + 6d=35
27+ 2d²=35
2d² =35-27
2d² = 8
d² =4
d²=+- 2
when d=2
we get,
(3-2),3,(3+2)
=>1,3,5
then the
when d= -2
(3+2),3,(3-2)
=>5,3,1
then the
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by
6
ANSWER
..........
3-d)²+3²+(3+d)²=35
9 + d² - 6d + 9 + 9 + d² + 6d=35
27+ 2d²=35
2d² =35-27
2d² = 8
d² =4
d²=+- 2
d=2
we get,
(3-2),3,(3+2)
=>1,3,5
}t_{n} = (a + (n - 1)d)
_______________
= > 1 + 2n - 2 \\ = > (2n - 1
___________________
}tn=(a+(n−1)d)=>1+2n−2=>(2n−1)
when d= -2
(3+2),3,(3-2)
=>5,3,1
×××××××××*
_{n} = 5 + (n - 1)( - 2) \\
________________
= > 5 - 2n + 2 \\ = > (- 2n + 7)
_____________________
=5+(n−1)(−2)=>5−2n+2=>(−2n+7)
========÷
..........
3-d)²+3²+(3+d)²=35
9 + d² - 6d + 9 + 9 + d² + 6d=35
27+ 2d²=35
2d² =35-27
2d² = 8
d² =4
d²=+- 2
d=2
we get,
(3-2),3,(3+2)
=>1,3,5
}t_{n} = (a + (n - 1)d)
_______________
= > 1 + 2n - 2 \\ = > (2n - 1
___________________
}tn=(a+(n−1)d)=>1+2n−2=>(2n−1)
when d= -2
(3+2),3,(3-2)
=>5,3,1
×××××××××*
_{n} = 5 + (n - 1)( - 2) \\
________________
= > 5 - 2n + 2 \\ = > (- 2n + 7)
_____________________
=5+(n−1)(−2)=>5−2n+2=>(−2n+7)
========÷
Similar questions