Math, asked by NikhilNeemrot, 8 days ago

The sum of the four angles of a quadrilateral is 360^ .

(i) The angles of quadrilateral are in the ratio

8:1:5:6. Find the measure of each angle. (a) 190 degrees, 260 degrees 130 degrees and 140 degrees

(b) 70 degrees 18 degrees, 144 degrees and 90 degrees

(c) 144°, 18 degrees, 90 degrees and 108 degrees

(d) 108 degrees , 78 degrees 18 degrees and 90°

Answers

Answered by EmberMoonbliss
26

\sf\large\underline{Question :-}

  • The sum of the four angles of a quadrilateral is 360^ .The angles of quadrilateral are in the ratio 8:1:5:6.

\sf\large\underline{Answer:-}

  • Angle I = 144°
  • Angle II = 18°
  • Angle III = 90°
  • Angle IV = 108°

\sf\large\underline{Solution:-}

  • Let the angles of the quadrilateral be 'x'
  • The ratio given is 8:1:5:6
  • Let angle I = 8x
  • Angle II = 1x
  • Angle III = 5x
  • Angle IV = 6x

\red\mapsto Sum of all angles of a quadrilateral = 360°

\red\mapstoAngle I + Angle II +Angle III + Angle IV = 360°

\red\mapsto8x + 1x + 5x + 6x = 360°

\red\mapsto20x = 360°

\red\mapsto\bold{x \: = \cancel\dfrac{360}{20}}

\red\mapsto x = 18

  • \purple\bigstarAngle I = 8x => 8 × 18 => 144°
  • \purple\bigstarAngle II = 1x => 1 × 18 => 18°
  • \purple\bigstarAngle III = 5x => 5 × 18 => 90°
  • \purple\bigstarAngle IV = 6x => 6 × 18 => 108°
Answered by Teluguwala
10

c) Option c is

144°, 18°, 90° and 108°

 \:

Step-by-step explanation :

Given :-

➠ The sum of the four angles of a quadrilateral is 360°

➠ The angles of quadrilateral are in the ratio 8:1:5:6.

 \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:

To Find :-

➠ The measure of each angle in a quadrilateral

 \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:

Used Formula :-

\bf  \purple⟼\red{ \: Sum \: of \: all \: angles \:  _{(Quadrilateral)}= 360°}

 \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:

Solution :-

In Quadrilateral,

Sum of all angles = 360°

The angles are in ratio 8:1:5:6

Let,

  • First angle = 8x

  • Second angle = x

  • Third angle = 5x

  • Fourth angle = 6x

So,

\bf ⟹ \: Sum \: of \: all \: angles  \: _{(Quadilateral)}= 360°

\bf ⟹ \: 8x + x + 5x + 6x= 360°

\bf ⟹ \: 20x= 360°

 \displaystyle\bf ⟹ \: x=   \cancel\frac{360}{20}

\red{⟹ \: \underline{ \boxed{ \bf x = 18}}}

Now,

➠ First angle = 8x = 18×8 = 144°

➠ Second angle = x = 18°

➠ Third angle = 5x = 18×5 = 90°

➠ Fourth angle = 6x = 18×6 = 108°

Hence,

All angles in a quadrilateral is 144°, 18°, 90° and 108°

 \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:

Verification :-

\bf ⟹ \: Sum \: of \: all \: angles  \: _{(Quadrilateral)}= 360°

\bf ⟹ \: 144° +  18° +  90°  + 108°= 360° \:

 ⟹ \:  \boxed{ \bf360°= 360° }

Hence, verified !

 \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:

Similar questions