Math, asked by vedantpedanker, 8 months ago

the sum of the fourth and eight term of an A.P is 22 and the product of the second and the sixth is 33 find A.P​

Answers

Answered by Ataraxia
11

GIVEN :-

  • Sum of the \sf 4^{th} and \sf 8^{th} term  of an AP = 22
  • Product of  \sf 2^{nd} and \sf 6^{th} term = 33

TO FIND :-

  • AP

SOLUTION :-

 Let ,

  \sf 1^{st} term = a

  Common difference = d

           \bf \boxed{\bf a_n=a+(n-1)d}

   

  \bullet \sf \ a_4+a_8 = 22

     \longrightarrow \sf a+(4-1)d +a+(8-1)d = 22 \\\\\longrightarrow a+3d+a+7d = 22 \\\\\longrightarrow  2a+10d= 22 \\\\\longrightarrow a+5d= 11  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ..............(1)

 \bullet\sf \ a_2\times a_6 = 33

   \longrightarrow\sf a+(2-1)d \times a+(6-1)d =33 \\\\\longrightarrow (a+d)\times (a+5d) = 33

   We know that a + 5d = 11 ,

   \longrightarrow\sf (a+d)\times 11 = 33 \\\\\longrightarrow a+d = 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ..............(2)

 Equation (1) - Equation (2) ,

  \longrightarrow \sf 4d = 8 \\\\\longrightarrow \bf d = 2

  Substitute d = 2 in equation (2) ,

   \longrightarrow\sf a+2= 3 \\\\\longrightarrow \bf a = 1

   AP = 1 , 3 , 5 , 7 , 9 , 11 , .....................

Similar questions