Math, asked by reshmabeg234, 11 months ago

The sum of the height and radius of the solid cylinder is 37m.If the total surface area of the cylinder be1628msq,find it's volume

Answers

Answered by Anonymous
23

ANSWER :

Volume of the cylinder is 4620 m³.

EXPLANATION :

GIVEN :-

  • Sum of height and radius of the solid cylinder = 37 m.
  • Total surface area of the cylinder = 1628 m².

TO FIND :

  • Volume of cylinder.

SOLUTION :

Let the height of the cylinder be h m and the radius of the cylinder be r m.

Sum of height and radius= 37 m.

Total surface area = 1628 m².

We know,

TSA of cylinder = 2πr(h+r)

According to the question,

\sf{h+r=37............(i)}

\sf{2\pi\:r(h+r)=1628............(ii)}

Taking eq(ii)

\sf{2\pi\:r(h+r)=1628}

\implies{2\times\frac{22}{7}\times\:r\times\:37=1628\:\:[From\:eq(i)\:h+r=37]}

\implies\sf{r=1628\times\:\frac{1}{2}\times\:\frac{7}{22}\times\:\frac{1}{37}}

\implies\sf{r=7}

† Putting r = 7 in eq .(i) †

h +r = 37

→h + 7 = 37

→h = 37 - 7

h = 30

Radius = 7 m.

Height = 30 m.

We know,

Volume of cylinder= πr²h

\sf{\:\:\:Volume\: of\: cylinder=\pi\:r^2h}

\implies\sf{Volume\: of\: cylinder=\frac{22}{7}\times\:7\times\:7\times\:30\:m^3}

\implies\sf{Volume\:of\: cylinder=4620\:m^3}

Therefore, volume of the cylinder is 4620 m³.

____________________

Answered by amitkumar44481
40

AnsWer :

Volume of Cylinder is 4620 m³.

Given :

  • Sum of the height and radius is 37 m.
  • Total surface area of Cylinder is 1628 m².

Solution :

  • Let height of Cylinder be h m.
  • And radius of Cylinder be r m

Given,

  \dashrightarrow\tt h + r = 37 \: m. -  -  - (1)

And,

T.S.A of Cylinder

 \dashrightarrow\tt2 \pi r(h + r) = 1628. -  -  - (2)

\rule{200}3

Taking Equation 2, We get

  \implies\tt2 \pi r(h + r) = 1628.

By equation 1,

 \implies \tt2 \pi r(37) = 1628.

 \implies \tt r = \frac{\cancel{1628} \times 7}{2 \times \cancel{37 }\times 22}

 \implies \tt r = \frac{44 \times 7}{2 \times 22}

 \implies \tt r = \frac{ \cancel{44} \times 7}{2 \times \cancel{ 22}}

 \implies \tt r = \frac{ \cancel2 \times 7}{ \cancel2 }

 \implies \tt r = 7 \: m.

Now,

Putting the value r in equation (1), We get.

 \implies \tt  h + r = 37.

 \implies \tt  h + 7 = 37.

 \implies \tt  h  = 30 \: m.

According to Question,

*Volume of Cylinder = πr²h.

 \implies \tt \pi { r }^{2} h =  \frac{22}{\cancel7}  \times \cancel7 \times 7 \times 30.

 \implies \tt \pi { r }^{2} h =  22\times  7 \times 30.

 \implies \tt \pi { r }^{2} h =  4620 \:  {m}^{3} .

Therefore, the Volume of Cylinder is 4620 m³.

Similar questions