Math, asked by manuelalias8311, 1 year ago

The sum of the height and the radius of a solid cylinder is 35 cm and its total surface area is 3080 cm square find the volume of the cylinder

Answers

Answered by triyanshi64
25
h+r=35cm
surface area = 2πr(r+h)
3080=2×22/7×r×35
r = 14 cm
14+h=35
h= 21cm
volume = 22/7×14×14×21
= 66×196
=12936 cubic cm
Answered by Anonymous
29

Answer:

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Given :}}}}}}\end{gathered}

  • ➺ The sum of the height and the radius of a solid cylinder = 35 cm.
  • ➺ Total surface area of cylinder = 3080 cm.

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:To Find :}}}}}}\end{gathered}

  • ➺ Radius of cylinder
  • ➺ Volume of the cylinder

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Using Formulae :}}}}}}\end{gathered}

\bigstar{\underline{\boxed{\bf{\red{TSA \:  of \:  cylinder = 2\pi r(r + h)}}}}}

\bigstar{\underline{\boxed{\bf{\red{Volume \:  of \:  cylinder =  \pi  {r}^{2}h}}}}}

\pink\bigstar Where

  • TSA = Total surface area
  • π = 22/7
  • r = radius
  • h = height

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Solution :}}}}}}\end{gathered}

\pink\bigstar Here

  • r + h = 35 cm
  • Total surface area of cylinder = 3080 cm.

\begin{gathered}\end{gathered}

\pink\bigstar Firstly, Finding the radius of cylinder

{\dashrightarrow{\pmb{\sf{TSA \:  of \:  cylinder = 2\pi r(r + h)}}}}

  • Substuting the values

{\dashrightarrow{\sf{3080 = 2 \times  \dfrac{22}{7}  \times  r(35)}}}

{\dashrightarrow{\sf{3080 = 2 \times  \dfrac{22}{7}  \times  r \times 35}}}

{\dashrightarrow{\sf{3080 = 2 \times  \dfrac{22}{\cancel{7}} \times  r \times  \cancel{35}}}}

{\dashrightarrow{\sf{3080= 2 \times {22}\times  r \times 5}}}

{\dashrightarrow{\sf{3080= 220r}}}

{\dashrightarrow{\sf{Radius =  \dfrac{3080}{220}}}}

{\dashrightarrow{\sf{Radius =  \cancel{\dfrac{3080}{220}}}}}

{\dashrightarrow{\sf{Radius = 14 \: cm}}}

\bigstar{\underline{\boxed{\bf{ \purple{Radius  \: of  \: cylinder  = 14 \: cm}}}}}

The radius of Cylinder is 14 cm.

\begin{gathered}\end{gathered}

\pink\bigstar Now, Finding the height of cylinder

\dashrightarrow{\pmb{\sf{Radius + Height = 35 \: cm}}}

  • Substuting the values

\dashrightarrow{\sf{14+ Height = 35 \: cm}}

\dashrightarrow{\sf{Height = 35  - 14}}

\dashrightarrow{\sf{Height = 21 \: cm}}

\bigstar{\underline{\boxed{\bf{\purple{Height = 21 \: cm}}}}}

The height of cylinder is 21 cm.

\begin{gathered}\end{gathered}

\pink\bigstar Now, Finding the volume of cylinder

{\dashrightarrow{\pmb{\sf{Volume \:  of \:  cylinder =  \pi  {r}^{2}h}}}}

  • Substuting the values

{\dashrightarrow{\sf{Volume \:  of \:  cylinder =   \dfrac{22}{7}  \times  {(7)}^{2}\times 21}}}

{\dashrightarrow{\sf{Volume \:  of \:  cylinder =   \dfrac{22}{7}  \times  {(7 \times 7)}\times 21}}}

{\dashrightarrow{\sf{Volume \:  of \:  cylinder =   \dfrac{22}{\cancel{7}}  \times  {(14 \times 14)}\times  \cancel{21}}}}

{\dashrightarrow{\sf{Volume \:  of \:  cylinder =   22\times156 \times 3}}}

{\dashrightarrow{\sf{Volume \:  of \:  cylinder =  12,936 \:  {cm}^{2} }}}

\bigstar{\underline{\boxed{\bf{\purple{Volume \:  of \:  cylinder =  12,936 \:  {cm}^{2}}}}}}

The volume of cylinder is 12,936 cm².

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Diagram :}}}}}}\end{gathered}

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{14\ cm}}\put(9,17.5){\sf{21\ cm}}\end{picture}

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Learn More :}}}}}}\end{gathered}

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

\begin{gathered}\end{gathered}

\begin{gathered}{\underline{\underline{\maltese{\textsf{\textbf{\:Request :}}}}}}\end{gathered}

  • ↠ If there is any difficulty viewing this answer in app, kindly see this answer at website Brainly.in for clear steps and understanding.
  • ↠ Here is the question link : https://brainly.in/question/6691044

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions