Math, asked by bhupeshtandan41, 6 months ago

The sum of the length and the breadth of a rectangle is 240 cm. If the length is
decreased by 20% and the breadth is increased by 10% the perimeter remains the
same. Find the dimensions of the rectangle.

please tell me the answer fast and no unnecessary messages please​ it's too urgent please

Answers

Answered by EliteZeal
239

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Sum of the length and the breadth of a rectangle is 240 cm

 \:\:

  • When the length is decreased by 20% and the breadth is increased by 10% the perimeter remains the same

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Dimensions of the rectangle

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let the length of rectangle be "x"

  • Let the breadth of rectangle be "y"

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

Sum of the length and the breadth is 240 cm

 \:\:

So,

 \:\:

➜ x + y = 240

 \:\:

➜ x = 240 - y ------ (1)

 \:\:

Also given that , when the length is decreased by 20% and the breadth is increased by 10% the perimeter remains the same

 \:\:

 \underline{\bold{\texttt{New length :}}}

 \:\:

Length is decreased by 20%

 \:\:

 \sf x- \dfrac { 20 } { 100 } \times x

 \:\:

 \sf x - \dfrac { 1 } { 5 } \times x

 \:\:

 \sf \dfrac { 5x - x } { 5 }

 \:\:

 \sf \dfrac { 4x } { 5 }

 \:\:

 \underline{\bold{\texttt{New breadth :}}}

 \:\:

Breadth is increased by 10%

 \:\:

 \sf y + \dfrac { 10 } { 100 } \times y

 \:\:

 \sf y + \dfrac { 1 } { 10 } \times y

 \:\:

 \sf \dfrac { 10y + y} { 10 }

 \:\:

 \sf \dfrac { 11y } { 10 }

 \:\:

 \underline{\bold{\texttt{Perimeter of rectangle :}}}

 \:\:

➠ 2(length + breadth)

 \:\:

 \underline{\bold{\texttt{Perimeter with original dimensions :}}}

 \:\:

➜ 2(length + breadth)

 \:\:

➜ 2(240)

 \:\:

➜ 480 cm

 \:\:

 \underline{\bold{\texttt{Perimeter with new dimensions :}}}

 \:\:

➜ 2(length + breadth)

 \:\:

 \sf 2(\dfrac { 4x } { 5 } + \dfrac { 11y } { 10 })

 \:\:

 \sf 2(\dfrac {8x + 11y } { 10 })

 \:\:

 \sf \dfrac { 8x + 11y } { 5 } cm ----- (2)

 \:\:

 \underline{\bold{\texttt{Putting the value of "x" from (1) to (2) }}}

 \:\:

 \sf \dfrac { 8(240 - y) + 11y } { 5 }

 \:\:

 \sf \dfrac { 1920 - 8y + 11y } { 5 }

 \:\:

 \sf \dfrac { 1920 + 3y } { 5 } cm

 \:\:

Given that perimeter remains unchanged

 \:\:

So,

 \:\:

 \sf \dfrac { 1920 + 3y } { 5 } = 480

 \:\:

 \sf 1920 + 3y = 480 \times 5

 \:\:

 \sf 1920 + 3y = 2400

 \:\:

 \sf 3y = 2400 - 1920

 \:\:

 \sf 3y = 480

 \:\:

 \sf y = \dfrac { 480 } { 3 }

 \:\:

 \sf y = 160

 \:\:

  • Hence breadth of rectangle is 160 cm

 \:\:

 \underline{\bold{\texttt{Putting y = 160 in (1) }}}

 \:\:

➜ x = 240 - y

 \:\:

➜ x = 240 - 160

 \:\:

➨ x = 80

 \:\:

  • Hence length of rectangle is 80 cm

 \:\:

Therefore the length and breadth of rectangle is 80 cm & 160 cm respectively

 \:\:

─────────────────────────

Additional information

 \:\:

Properties of rectangle

  • Area of rectangle = length × breadth

  • The opposite sides are parallel and equal to each other.

  • Each interior angle is equal to 90 degrees.

  • The sum of all the interior angles is equal to 360 degrees.

  • The diagonals bisect each other.

  • Both the diagonals have the same length.

Anonymous: Nice!
Answered by Ranveerx107
0

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Sum of the length and the breadth of a rectangle is 240 cm

 \:\:

  • When the length is decreased by 20% and the breadth is increased by 10% the perimeter remains the same

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Dimensions of the rectangle

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the length of rectangle be "x"

Let the breadth of rectangle be "y"

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

〚 Sum of the length and the breadth is 240 cm 〛

 \:\:

So,

 \:\:

➜ x + y = 240

 \:\:

➜ x = 240 - y ------ (1)

 \:\:

〚 Also given that , when the length is decreased by 20% and the breadth is increased by 10% the perimeter remains the same 〛

 \:\:

 \underline{\bold{\texttt{New length :}}}

 \:\:

Length is decreased by 20%

 \:\:

 \sf x- \dfrac { 20 } { 100 } \times x

 \:\:

 \sf x - \dfrac { 1 } { 5 } \times x

 \:\:

 \sf \dfrac { 5x - x } { 5 }

 \:\:

 \sf \dfrac { 4x } { 5 }

 \:\:

 \underline{\bold{\texttt{New breadth :}}}

 \:\:

Breadth is increased by 10%

 \:\:

 \sf y + \dfrac { 10 } { 100 } \times y

 \:\:

 \sf y + \dfrac { 1 } { 10 } \times y

 \:\:

 \sf \dfrac { 10y + y} { 10 }

 \:\:

 \sf \dfrac { 11y } { 10 }

 \:\:

 \underline{\bold{\texttt{Perimeter of rectangle :}}}

 \:\:

➠ 2(length + breadth)

 \:\:

 \underline{\bold{\texttt{Perimeter with original dimensions :}}}

 \:\:

➜ 2(length + breadth)

 \:\:

➜ 2(240)

 \:\:

➜ 480 cm

 \:\:

 \underline{\bold{\texttt{Perimeter with new dimensions :}}}

 \:\:

➜ 2(length + breadth)

 \:\:

 \sf 2(\dfrac { 4x } { 5 } + \dfrac { 11y } { 10 })

 \:\:

 \sf 2(\dfrac {8x + 11y } { 10 })

 \:\:

 \sf \dfrac { 8x + 11y } { 5 } cm ----- (2)

 \:\:

 \underline{\bold{\texttt{Putting the value of "x" from (1) to (2) }}}

 \:\:

 \sf \dfrac { 8(240 - y) + 11y } { 5 }

 \:\:

 \sf \dfrac { 1920 - 8y + 11y } { 5 }

 \:\:

 \sf \dfrac { 1920 + 3y } { 5 } cm

 \:\:

Given that perimeter remains unchanged

 \:\:

So,

 \:\:

 \sf \dfrac { 1920 + 3y } { 5 } = 480

 \:\:

 \sf 1920 + 3y = 480 \times 5

 \:\:

 \sf 1920 + 3y = 2400

 \:\:

 \sf 3y = 2400 - 1920

 \:\:

 \sf 3y = 480

 \:\:

 \sf y = \dfrac { 480 } { 3 }

 \:\:

 \sf y = 160

 \:\:

Hence breadth of rectangle is 160 cm

 \:\:

 \underline{\bold{\texttt{Putting y = 160 in (1) }}}

 \:\:

➜ x = 240 - y

 \:\:

➜ x = 240 - 160

 \:\:

➨ x = 80

 \:\:

Hence length of rectangle is 80 cm

 \:\:

  • Therefore the length and breadth of rectangle is 80 cm & 160 cm respectively

 \:\:

─────────────────────────

Similar questions