Math, asked by sipukaur7860, 1 month ago

The sum of the 'n'. terms of an arithmetic sequence is Sn =3n2+2n.
a) find its first term and common different.
b)write it's algebraic form

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that,

Sum of n terms of an AP is

\rm :\longmapsto\:S_n =  {3n}^{2} + 2n

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Hence,

\rm :\longmapsto\:S_n =  {3n}^{2} + 2n

\rm :\longmapsto\:\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)= n( {3n} + 2)

\rm :\longmapsto\:2a + (n - 1)d = 6n + 4

\rm :\longmapsto\:2a + nd - d = 6n + 4

\rm :\longmapsto\:(2a - d) + nd = 6n + 4

On comparing we get,

 \red{\rm :\longmapsto\:d = 6}

and

\rm :\longmapsto\:2a - d = 4

\rm :\longmapsto\:2a - 6 = 4

\rm :\longmapsto\:2a = 4 + 6

\rm :\longmapsto\:2a = 10

 \red{\bf :\longmapsto\:a = 5}

We know,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

\rm :\longmapsto\:a_n = 5 + (n - 1)6

\rm :\longmapsto\:a_n = 5 + 6n - 6

\rm :\longmapsto\:a_n =  6n - 1

Hence,

\rm :\longmapsto\:a_n =  6n - 1

\rm :\longmapsto\:a_1 =  5

\rm :\longmapsto\:d = 6

Similar questions