the sum of the number of factors of the number N anN^2 is 34. how many such distinct numbers N<150 exist
Answers
Answered by
0
Step-by-step explanation:
Lets take an example 12. Factors of 12 are 2- 2time and 3- 1 time. Total no of factor - (2+1) * (1+1) =6.
For 12*12 - it has 2 - 4times and 3 - 2 timed. Total no of factor - 5*3=15
Case 1 :-
N=x.y
For N*N
Trying reverse approach. 35 = 5*7.
Factors are x - 4times and y- 6times.
FOR N - x -2 times and y- 3 times.
Total no of factor is (2+1)*(3+1)=12
Case 2:-
If N^2 is raised to the power of 34.
N^2 will have 34 factors.
And hence for N we have 17 factors.
Hence total no of factor as 17+1 = 18
Similar questions