Math, asked by vaibshu1110, 11 months ago

the sum of the numerater and the denominator if a fraction is equal to 7. four times the numerator is 8 less than 5 times the denominator. find the fraction​

Answers

Answered by Anonymous
269

Given :

  • The sum of the numerater and the denominator if a fraction is equal to 7.
  • Four times the numerator is 8 less than 5 times the denominator.

To Find :

  • The required Fraction.

Solution :

Let the numerator of the fraction be x.

Let the denominator of the fraction be y.

Fraction = \bold{\dfrac{x}{y}}

Case 1 :

The sum of the quantities, numerator and denominator of the fraction is 7.

Equation :

\sf{\longrightarrow{x+y=7}}

\sf{x=7-y\:\:\:\:\:(1)}

Case 2 :

Four times the numerator of the fraction is 8 less than 5 times the denominator.

Equation :

\sf{\longrightarrow{4x=5y-8}}

\sf{\longrightarrow{4(7-y)=5y-8}}

\bold{\big[From\:equation\:(1)\:x\:=\:7-y\big]}

\sf{\longrightarrow{28-4y=5y-8}}

\sf{\longrightarrow{28+8=5y+4y}}

\sf{\longrightarrow{36=9y}}

\sf{\longrightarrow{\dfrac{36}{9}=y}}

\sf{\longrightarrow{4=y}}

Substitute, y = 4 in equation (1),

\sf{\longrightarrow{x=7-y}}

\sf{\longrightarrow{x=7-4}}

\sf{\longrightarrow{x=3}}

\large{\boxed{\sf{Numerator\:=\:x\:=\:3}}}

\large{\boxed{\sf{Denominator\:=\:y\:=\:4}}}

\large{\boxed{\sf{Fraction\:=\:\dfrac{x}{y}=\dfrac{3}{4}}}}


shrutsti: great
Queeennn: ..
Anonymous: Thank you.
Anonymous: @Queeennn Huh! ←_←
Answered by ButterFliee
85

\huge\underline\mathbb\red{GIVEN:-}

  • The sum of the numerater and the denominator is 7
  • Four times the numerator is 8 less than 5 times the denominator

\huge\underline\mathbb\red{TO\:FIND:-}

Find the fraction = ?

\huge\underline\mathbb\red{SOLUTION:-}

Let the fraction be \large\bf{\frac{x}{y}}

According to question :-

The sum of the numerater and the denominator is equal to 7

\implies \bf\blue{ x + y = 7....1)}

\implies \bf{x = 7-y}\bf{(from..1)}

four times the numerator is 8 less than 5 times the denominator

\implies \bf\blue{4x = 5y - 8...2)}

putting the value of x,

\implies \bf{ 4(7-y)= 5y - 8}

\implies \bf{28 - 4y = 5y - 8}

\implies \bf{ 28 + 8 = 4y + 5y}

\implies \bf{36 = 9y}

\implies \bf{y = \frac{36}{9}}

\large{\boxed{\bf{\red{y = 4}}}}

put the value of 'y' in equation 1)

\implies \bf{x + 4 = 7}

\implies \bf{ x = 7-4}

\large{\boxed{\bf{\red{x= 3}}}}

Thus, the fraction becomes \bf{\frac{3}{4}}

\large\underline\mathbb\red{FINAL \: ANSWER:-}

\huge{\boxed{\bf{\red{Fraction = \frac{x}{y}=\frac{3}{4}}}}}

\large\underline\mathbb\red{VERIFICATION:-}

Put the values of x and y in equation 1)

\implies \bf\blue{ x + y = 7}

\implies \bf{ 3+ 4 = 7)}

\implies \large\bf{ 7 = 7}

Put the values of x and y in equation 2)

\implies \bf\blue{4x = 5y - 8}

\implies \bf{4(3) = 5(4) - 8}

\implies \bf{12 = 20 - 8}

\implies \large\bf{12 = 12}

\large\underline\mathrm\red{VERIFIED:-}

Similar questions