Math, asked by mohds101050, 7 months ago

the sum of the numerator and denominator of a certain fraction is 8.if 2 is added to the numerator and to the denominator, the value of the fraction increased by 4/35.find the fraction.​

Answers

Answered by Anonymous
16

Answer :

›»› The fraction fraction will be 3/5.

Given :

  • The sum of the numerator and denominator of a certain fraction is 8. If 2 is added to the numerator and to the denominator, the value of the fraction increased by 4/35.

To Find :

  • The fraction.

Solution :

Let us assume that the numerator is "x" and the denominator is "y" respectively.

As it is given that the sum of the numerator and denominator of a certain fraction is 8.

⟶ x + y = 8 .......(1)

⟶ y = 8 - x ........(2)

As it is also given that If 2 is added to the numerator and to the denominator, the value of the fraction increased by 4/35.

\footnotesize\displaystyle  \tt{: \implies \frac{x + 2}{y + 2}  =  \frac{x}{y} +  \frac{4}{35} }

\footnotesize\displaystyle{\tt{: \implies \frac{x + 2}{8 - x + 2}  =  \frac{x}{8 - x} +  \frac{4}{35} }}

\footnotesize{\displaystyle{\tt{: \implies{ \frac{x + 2}{8 + 2 - x}  = \frac{x}{8 - x} +  \frac{4}{35} }}}}

\footnotesize{\displaystyle{\tt{: \implies{ \frac{x + 2}{10 - x}  = \frac{x}{8 - x} +  \frac{4}{35} }}}}

\footnotesize{\displaystyle{\tt{: \implies{ \frac{x + 2}{8 + 2 - x}  -  \frac{x}{8 - x} +  \frac{4}{35} = 0}}}}

\footnotesize{\displaystyle{\tt{: \implies{ \frac{35(8 - x) \times (x + 2) - 35x \times (10 - x) \times (8 - x)}{35(10 - x) \times (8 - x)} }}}}

\footnotesize{\displaystyle{\tt{: \implies{ \frac{(280 - 35x) \times (x + 2) - 350x +  {35x + ( - 40 + 4x) \times (8 - x)}^{2} }{35(10 - x) \times (8 - x)} = 0}}}}

\footnotesize{\displaystyle{\tt{: \implies{ \frac{280x + 560 -  {35x}^{2} - 70x - 350x +  {35x}^{2} - 320 + 40x + 32x -  {4x}^{2} }{35(10 - x) \times (8 - x)} = 0}}}}

\footnotesize{\displaystyle{\tt{: \implies{ \frac{280x + 560 - 70x - 350x - 320 + 40x + 32x -  {4x}^{2} }{35(10 - x) \times (8 - x)} = 0}}}}

\footnotesize{\displaystyle{\tt{: \implies{ \frac{ - 68x + 560 - 320 -  {4x}^{2}}{35(10 - x) \times (8 - x)} = 0}}}}

\footnotesize{\displaystyle{\tt{: \implies{ - 68x + 240 -  {4x}^{2}  = 0}}}}

\footnotesize{\displaystyle{\tt{: \implies{ { - 4x}^{2} - 68x + 240 = 0}}}}

\footnotesize{\displaystyle{\tt{: \implies{ {x}^{2} + 17x - 60 = 0}}}}

\footnotesize{\displaystyle{\tt{: \implies{ {x}^{2} + 20x - 3x - 60 = 0}}}}

\footnotesize{\displaystyle{\tt{: \implies{x \times (x + 20) - 3(x + 20) = 0}}}}

\footnotesize{\displaystyle{\tt{: \implies{(x + 20) \times (x - 3) = 0}}}}

\footnotesize{\displaystyle{\tt{: \implies{x + 20 =0 \quad| \quad x - 3 = 0}}}}

\footnotesize{\displaystyle{\bf{: \implies{x = -20 \quad| \quad x = 3}}}}

Since x cannot be negative so, x = 3

Now, put the value of x in equation (2)

\displaystyle{\tt{: \implies{y = 8 - x}}}

\displaystyle{\tt{: \implies{y = 8 - 3}}}

\displaystyle{\bf{: \implies{y = 5}}}

⟶ The fraction = x/y

⟶ The fraction = 3/5

Hence, the fraction fraction will be 3/5.

Answered by Anonymous
6

Refer to the attached images ❤️

Attachments:
Similar questions