Math, asked by ARoyalSideGaming, 10 months ago

The sum of the numerator and denominator of a fraction is 17. On adding 3 to the numerator and subtracting 3 from the denominator we get the reciprocal of the fraction.Find the fraction!​

Answers

Answered by Anonymous
16

\Large{\underline{\underline{\mathfrak{\bf{\orange{Question}}}}}}

The sum of the numerator and denominator of a fraction is 17. On adding 3 to the numerator and subtracting 3 from the denominator we get the reciprocal of the fraction . Find the fraction ?

\Large{\underline{\underline{\mathfrak{\bf{\orange{Solution}}}}}}

\Large{\underline{\mathfrak{\bf{\pink{Given}}}}}

  • The sum of the numerator and denominator of a fraction is 17.
  • adding 3 to the numerator and subtracting 3 from the denominator we get the reciprocal of the fraction .

\Large{\underline{\mathfrak{\bf{\pink{Find}}}}}

  • Fraction=?

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

Let,

  • Numerator = x
  • Denominator = y

A/c to question,

( The sum of the numerator and denominator of a fraction is 17 )

:\mapsto\sf{\:(x + y )\:=\:17......(1)}

Again,

(adding 3 to the numerator and subtracting 3 from the denominator we get the reciprocal of the fraction)

:\mapsto\sf{\:\dfrac{(x+3)}{(y-3)}\:=\:\dfrac{y}{x}} \\ \\ :\mapsto\sf{\:x(x+3)\:=\:y(y-3)} \\ \\ :\mapsto\sf{\:x^2+3x-y^2+3y\:=\:0} \\ \\ :\mapsto\sf{\:x^2-y^2+3(x+y)\:=\:0} \\ \\ \small\sf{\green{\:\:\:\:\:keep\:value\:by\:equ(1)}} \\ \\ :\mapsto\sf{\:x^2-y^2+3(17)\:=\:0} \\ \\ :\mapsto\sf{\:(x^2-y^2)\:=\:-51} \\ \\ \small\sf{\green{\:\:\:\:\:\:(a^2-b^2)\:=\:(a+b)(a-b)}} \\ \\ :\mapsto\sf{\:(x+y)(x-y)\:=\:-51} \\ \\ \small\sf{\green{\:\:\:again,\:keep\:value\:by\:equ(1)}} \\ \\ :\mapsto\sf{\:(x-y)\:=\:\cancel{\dfrac{-51}{17}}} \\ \\ :\mapsto\sf{\:(x-y)\:=\:-3.......(2)}

Add equation (1) and equ(2),

:\mapsto\sf{\:2x\:=\:14} \\ \\ :\mapsto\sf{\:x\:=\:\cancel{\dfrac{14}{2}}} \\ \\ :\mapsto\sf{\red{\:x\:=\:7}}

keep value of x in equ(1),

:\mapsto\sf{\:(7+y)\:=\:17} \\ \\ :\mapsto\sf{\:y\:=\:17-7} \\ \\ :\mapsto\sf{\red{\:y\:=\:10}}

\Large{\underline{\mathfrak{\bf{\pink{Thus}}}}}

:\mapsto\textsf{\orange{\:value of x = 7}} \\ \\ :\mapsto\textsf{\orange{\:value of y\:=\:10}}

\Large{\underline{\mathfrak{\bf{\pink{Hence}}}}}

:\mapsto\sf{\blue{\:fraction\:will\:be \:=\:\dfrac{7}{10}}}

Answered by mddilshad11ab
35

\huge\bold\green{\underline{Solution:}}

\bold\red{\underline{Let:}}

The numerator be N

The denominator be D

The fraction be N/D

\large{\underline{\red{\rm{A.T.Q:}}}}

\sf{The\:sum\:of\: numerator\:and\: denominator\:is\:17}

\sf{\dashrightarrow N+D=17------(i)}

\sf{on\: adding\:3\:to\:the\: numerator\:and\: subtracting}

\sf{from\: denominator\:we\:get\: reciprocal\:of\:the\: fraction}

\sf{\dashrightarrow \frac{N+3}{D-3}=\frac{D}{N}}

\sf{\dashrightarrow N^2+3N=D^2-3D}

\sf{\dashrightarrow N^2-D^2+3N+3D=0}

\sf{\dashrightarrow N^2-D^2+3(N+D)=0}

\sf{\dashrightarrow N^2-D^2+3*17=0}

\sf{\dashrightarrow N^2-D^2+51=0}

\sf{\dashrightarrow N^2-D^2=-51}

\sf{Here\: using\: identity}

\sf{a^2-b^2=(a+b)(a-b)}

\sf{\dashrightarrow (N+D)(N-D)=-51}

\sf{\dashrightarrow 17*(N-D)=-51}

\sf{\dashrightarrow (N-D)=\frac{-51}{17}}

\sf{\dashrightarrow N-D=-3----(ii)}

\sf{by\:solving\:equation\:I\:and\:II}

\sf{\dashrightarrow N+D=17}

\sf{\dashrightarrow N-D=-3}

\sf{\dashrightarrow \cancel{2}N=\cancel{14}}

\sf{\dashrightarrow N=7}

\sf{putting\:the\: value\:of\:N=7\:in\:eq\:1}

\sf{\dashrightarrow N+D=17}

\sf{\dashrightarrow 7+D=17}

\sf{\dashrightarrow D=17-7}

\sf{\dashrightarrow D=10}

Hence,

The numerator=7

The denominator=10

The fraction=7/10

\large{\underline{\red{\rm{AnswEr:\frac{7}{10}}}}}

Similar questions