Math, asked by parijain20151071, 2 months ago

the sum of the numerator and denominator of a fraction is 4 more than twice the numerator. if the numerator and denominator each are increased by 3 the fraction becomes 2/3. find the original fraction​

Answers

Answered by peermohamed54362
5

Answer:

Let numerator =x and denominator=y .. Fraction = X

According to the first condition

⇒ x + y = 2x + 4 ⇒y=x+4

According  \: to  \: the  \: second  \: condition</p><p></p><p>

 \frac{x + 3}{y + 3}  =  \frac{2}{3}

3x + 9 = 2y +6⇒ 3x - 2y =

-3....eq2

Substitute the value of y from eq1

to eq2

⇒ 3x − 2 (x + 4) = −3 ⇒ 3x - 2x + 8 =

-3⇒x=5

Put x = 5 in eq1

⇒y=5+4⇒y=9

Hence, fraction =

 \frac{5}{9}

Attachments:
Answered by Anonymous
112

 \huge \rm {Answer:-}

__________________________________

\sf\red{Consideration:-}

 \mapsto \tt {Let,\: the\: Numerator\: be\: "x" }

 \mapsto \tt {Let,\: the\: Denominator\: be\: "y" }

 \mapsto \tt {And,\: the\: fraction\: be\: \frac{x}{y}}

__________________________________

★According to the conditions given in the Question:-

\sf\purple{Condition\: 1:-}

★The numerator and denominator of a fraction is 4 more than twice the numerator.

 \mapsto \tt{x+y=2x+4}

 \mapsto \tt{y=2x-x+4}

 \mapsto \tt{y=x+4} ------>Equation-1

__________________________________

\sf\pink{Condition\: 2:-}

★The numerator and denominator each are increased by 3 the fraction becomes  {\frac{2}{3}} .

\large \mapsto \tt{\frac{x+3}{y+3}=\frac{2}{3}}

★"As a result of cross multiplication",we get,

 \mapsto \tt {3x+9=2y+6}

 \mapsto \tt{3x-2y=6-9}

 \mapsto \tt{3x-2y=-3} ---->Equation-2

__________________________________

\sf\orange{Substitution:-}

★"Substituting the value of 'y' from Equation-1 in Equation-2"

 \mapsto \tt {3x-2(x+4)=-3}

 \mapsto \tt {3x-2x-8=-3}

 \mapsto \tt {x=-3+8}

\large \tt {\fbox {x=5}}

__________________________________

★"As we got the value of x,it can substituted in either of the above given equations to get the value of y"

★-->>Substituting 'x value' in Equation-1

 \mapsto \tt {y=x+4}

 \mapsto \tt {y=5+4}

\large \tt {\fbox {y=9}}

________________________________

\sf\blue{Thereupon,}

-->>The original fraction is found to be:

\huge \mapsto \tt{\frac{x}{y}=\frac{5}{9}}

________________________________

Similar questions