Math, asked by ponung58641, 1 year ago

The sum of the numerator and the denominator of a fraction is 8 if 3 is added to both the numerator and the denominator the fraction becomes 3 upon 4 find the fraction

Answers

Answered by ShreyaSingh31
77

\bf{\huge{\underline{\boxed{\sf{\blue{Answer:}}}}}}

\bf{\underline{\underline{\sf{\green{Given:}}}}}

  • The sum of the numerator and the denominator of a fraction is 8
  • If 3 is added to both the numerator and the denominator the fraction becomes\frac{3}{4}

\bf{\underline{\underline{\sf{\green{To\:find:}}}}}

  • \bf\sf{The\:fraction}

\bf{\underline{\underline{\sf{\green{Solution:}}}}}

Let the Numerator of the fraction be x

Let the Denominator of the fraction be y

Fraction = \bf\sf\frac{x}{y}

\bf{\underline{\underline{\sf{\pink{As\:per\:first\:condition:}}}}}

  • The sum of the numerator and the denominator of a fraction is 8

Representing the condition mathematically to obtain our first equation.

=> Numerator + Denominator = 8

=> x + y = 8 ---> 1

\bf{\underline{\underline{\sf{\pink{As\:per\:second\:condition:}}}}}

  • If 3 is added to both the numerator and the denominator the fraction becomes\frac{3}{4}

Numerator = x + 3

Denominator = y + 5

Fraction = \bf\sf\frac{3}{4}

Representing the condition mathematically.

=> \sf\frac{x+3}{y+3} = \sf\frac{3}{4}

Cross multiplying,

=> \sf{4(x+3)\:=\:3(y + 3) }

=> \sf{4x +12 \:=\:3y+9}

=> \sf{4x - 3y = 9 - 12}

=> \bf\sf{4x-3y=- 3} ----> 2

Multiply equation 1 by 4,

=>\sf{ x + y = 8 }

=> \sf{4\:\times\:x\:+\:4\times\:y\:=\:4\times\:8}

=> \bf\sf{4x + 4y = 32} ---> 3

Solve equations 3 and 2 simultaneously by elimination method.

Subtract equation 3 from 2,

....\sf{\:+\:4x\:+\:4y\:=\:32}

- \sf{(\:+\:4x\:-\:3y\:=\:-3)}

----------------------------------

\sf{7y\:\:=\:35}

\sf{y\:=}\sf\frac{35}{7}

\sf{y =5 }

Substitute y = 5 in equation 1,

\sf{x+y=8}

\sf{x + 5 = 8 }

\sf{x = 8 - 5 }

\bf\sf{x = 3}

\bf{\underline{\boxed{\sf{\purple{Numerator\:=\:x\:=\:3}}}}}

\bf{\underline{\boxed{\sf{\purple{Denominator\:=\:y\:=\:5}}}}}

\bf{\underline{\boxed{\sf{\purple{Fraction\:=\frac{3}{5}}}}}}

\bf{\huge{\underline{\boxed{\sf{\blue{Verification}}}}}}

For first case :-

  • The sum of the numerator and the denominator of a fraction is 8

Numerator = x = 3

Denominator = y = 5

=> x + y = 8

=> 3 + 5 = 8

=> 8 = 8

LHS = RHS.

For second case :-

  • If 3 is added to both the numerator and the denominator the fraction becomes\frac{3}{4}

Numerator = x + 3 = 3 + 3 = 6

Denominator = y + 3 = 5 + 3 = 8

Fraction = \bf\frac{3}{4}

=> \sf\frac{x+3}{y+3} = \bf\frac{3}{4}

=> \sf\frac{6}{8} = \bf\frac{3}{4}

Dividing LHS by 2,

=> \sf\frac{3}{4} = \bf\frac{3}{4}

LHS = RHS.

Hence Verified.

Answered by Anonymous
56

\huge{\mathfrak{\underline{\underline{Answer :- }}}}

\huge{\bf{Fraction \: = \: \frac {3}{5}}}

\huge{\mathfrak{\blue{Explanation :-}}}

\large{\mathrm{\gray{Given :-}}}

The sum of the numerator and the denominator of a fraction is 8.

If 3 is added to both the numerator and the denominator the fraction becomes 3/4.

\large{\mathrm{\gray{Solution<strong> </strong><strong>:</strong><strong>-</strong>}}}

Let the Numerator of the fraction be a

Let the Denominator of the fraction be b

Fraction = a/b

✯ Case 1

The sum of the numerator and the denominator of a fraction is 8

Representing the condition mathematically to obtain our first equation.

Numerator + Denominator = 8

a + b = 8 ........(1)

✯ Case 2

If 3 is added to both numerator and denominator then the fraction become 3/4.

Now,

A.T.Q

a + 3/ b + 3 = 3/4

✯ By cross multiplication

⟹ 4(a + 3) = 3(b + 3)

⟹ 4a + 12 = 3b + 9

⟹ 4a - 3b = 9 - 12

⟹ 4a - 3b = -3 ..........(2)

\rule{200}{2}

Now, we will substitute the value of a in equation1

a + b = 8

a = 8 - b

_________[Put values in eq 2]

⟹ 4(8 - b) - 3b = -3

⟹ 32 - 4b - 3b = -3

⟹ 32 - 7b = -3

⟹ -7b = -3 - 32

⟹ -7b = -35

⟹ 7b = 35

⟹ b = 35/7

⟹ b = 5

\huge{\boxed{\boxed{\blue{Denominator (b) \: = \: 5}}}}

______________[put values in eq 1]

⟹ a + b = 8

⟹a + 5 = 8

⟹a = 8 - 5

⟹a = 3

\huge{\boxed{\boxed{\green{Numerator (a) \: = \: 3}}}}

\huge{\boxed{\boxed{\pink{Fraction \: = \: \frac{3}{5}}}}}

Similar questions