Math, asked by insnehalsaxena, 9 months ago

The sum of the numerator and the denominator of a fraction is 10 . If 1 is added to both the numerator and the denominator , the fraction becomes 1/2 . Frame equations for the same .

Answers

Answered by TheProphet
6

Solution :

Let the numerator place be r & denominator place be m;

\boxed{\bf{The\:required\:fraction=\frac{r}{m} }}}

\underbrace{\tt{According\:\:to\:\:the\:\:question\::}}}

\longrightarrow\sf{r+m=10......................(1)}

&

\longrightarrow\sf{\dfrac{r+1}{m+1} =\dfrac{1}{2} }\\\\\longrightarrow\sf{2(r+1) = 1(m+1)}\\\\\longrightarrow\sf{2r + 2 =m+1}\\\\\longrightarrow\sf{2r-m=1-2}\\\\\longrightarrow\sf{2r-m=-1}\\\\\longrightarrow\sf{2r=-1+m}\\\\\longrightarrow\bf{r=-1+m/2..........................(2)}

∴ Putting the value of r in equation (1),we get;

\longrightarrow\sf{\dfrac{-1+m}{2} +m=10}\\\\\longrightarrow\sf{-1+m+2m=20}\\\\\longrightarrow\sf{-1+3m=20}\\\\\longrightarrow\sf{3m=20+1}\\\\\longrightarrow\sf{3m=21}\\\\\longrightarrow\sf{m=\cancel{21/3}}\\\\\longrightarrow\bf{m=7}

∴ Putting the value of m in equation (2),we get;

\longrightarrow\sf{r=\dfrac{-1+7}{2} }\\\\\longrightarrow\sf{r=\cancel{6/2}}\\\\\longrightarrow\bf{r=3}

Thus;

\boxed{\bf{The\:fraction=\frac{r}{m}=\frac{3}{7}  }}}

Answered by SarcasticL0ve
50

GivEn:-

  • The sum of the numerator and the denominator of a fraction is 10.

  • If 1 is added to both the numerator and the denominator , the fraction becomes \sf \dfrac{1}{2}.

To find:-

  • Fraction of numerator and denominator

SoluTion:-

✮ Let's numerator be x.✮ And let's denominator be y.

\dag\;{\underline{\underline{\bf{\purple{\;\;Now,\;as\;per\;givEn\; Question:-\;\;}}}}}

✇ The sum of the numerator and the denominator of a fraction is 10.

:\implies\sf\star\;\;\underline{x + y = 10}:\implies\sf x = 10 - y\;\;.....(1)

✇ If 1 is added to both the numerator and the denominator , the fraction becomes \sf \dfrac{1}{2}.

:\implies\sf \dfrac{x + 1}{y + 1} = \dfrac{1}{2}

\small\sf\;\;\dag\;{\underline{\blue{\;\;Cross\; Multiplying\;the\;fraction\;:-\;\;}}}

:\implies\sf 2(x + 1) = y + 1:\implies\sf 2x + 2 = y + 1

:\implies\sf 2x = y + 1 - 2:\implies\sf 2x = y - 1

:\implies\sf x = \dfrac{y - 1}{2}\;\;.....(2)

\small\sf\;\;\dag\; {\underline{\red{\;\; Substituting\;the\;value\;of\;x\;from\;eq(1)\;and\;2\;:-\;\;}}}

:\implies\sf 10 - y = \dfrac{y - 1}{2}

\small\sf\;\;\dag\; {\underline{\blue{\;\;Cross\; Multiplying\;the\;fraction\;:-\;\;}}}

:\implies\sf 2(10 - y) = y - 1

:\implies\sf 20 - 2y = y - 1

:\implies\sf - 2y - y = - 1 - 20

:\implies\sf - 3y = - 21

:\implies\sf y = \cancel{ \dfrac{21}{3}}

:\implies{\underline{\boxed{\bf{\pink{y = 7}}}}}

\small\sf\;\;\dag\; {\underline{\red{\;\; Substituting\;the\;value\;of\;y\;in\;eq(1)\;:-\;\;}}}

:\implies\sf x = 10 - 7

:\implies{\underline{\boxed{\bf{\pink{x = 3}}}}}

★Therefore,

  • Numerator of fraction (x) = 3

  • Denominator of fraction (y) = 7

\therefore\sf\; The\;fraction\;becomes = {\bf{\purple{ \dfrac{3}{7}}}}.

━━━━━━━━━━━━━━━

Similar questions