Math, asked by kashinathmalviya2507, 4 days ago

the sum of the perpendicular drawn from an Interior point of an equilateral triangle is 20 cm what is the length of side of the triangle find???​

Answers

Answered by rajnandini6d28
3

Answer:

Step-by-step explanation:

Given: an equilateral triangle ABC with side a, an interior point P and the perpendiculars PD, PE, PF respectively on to the sides BC, CA, AB.

To prove: PD+PE+PF is independent of the point P, but depends only on △ABC.

Observe

   area(ABC)= area(PBC)+ area(PCA)+ area(PAB).

But we know

                        area(PBC)=  

2

1

BC×PD,

                        area(PCA)=  

2

1

CA×PE,

                        area(PAB)=  

2

1

AB×PF.

But we know BC=CA=AB=a, since ABC is equilateral. Hence

                        area(ABC)=  

2

1

a(PD+PE+PF).

We obtain

                       PD+PE+PF=  

a

2area(ABC)

.

Hence PD+PE+PF depends only on the triangle ABC, but not on the point P.

Answered by anjumanyasmin
1

 an equilateral triangle ABC with side a, an interior point P and the perpendiculars PD, PE, PF respectively on to the sides BC, CA, AB.

To prove: PD+PE+PF is independent of the point P, but depends only on △ABC.

Observe

  area(ABC)= area(PBC)+ area(PCA)+ area(PAB).

But we know

                       area(PBC)=  

2

1

BC×PD,

                       area(PCA)=  

2

1

CA×PE,

                       area(PAB)=  

2

1

AB×PF.

But we know BC=CA=AB=a, since ABC is equilateral. Hence

                       area(ABC)=  

2

1

a(PD+PE+PF).

We obtain

                      PD+PE+PF=  

a

2area(ABC)

.

Hence PD+PE+PF depends only on the triangle ABC, but not on the point P

Similar questions