Math, asked by Gundasrivalli, 11 months ago

the sum of the radius of base and height of a solid right circular cylinder is 37cm.If the total surface area of the solid cylinder is 1628.Find its radius and height​

Answers

Answered by mddilshad11ab
29

\bold\green{:SOLUTION:}

☆GIVEN☆

  • The sum of radius and height of CYCLINDER=37cm
  • The total surface area of CYCLINDER=1628cm²

☆LET

  • The radius of CYCLINDER be r
  • The height of CYCLINDER be h

☆FIND

  • The radius and height of CYCLINDER

☆According to the above information☆

  • by using formula of TSA
  • here,(r+h)=37.....(1)

☆T S A OF CYCLINDER=1628☆

↠T.S.A = 1628 \\  \\ ↠2\pi \: r(r + h) = 1628 \\  \\ ↠2 \times  \frac{22}{7}  \times r \times 37 = 1628 \\  \\ ↠2 \times 22 \times r  \times  37 = 1628 \times 7 \\  \\ ↠r =  \frac{1628 \times 7}{2 \times 22 \times 37}  \\  \\ ↠r = 7cm

☆PUTTING THE VALVE OF r IN (r+h)=37

⟹r + h = 37 \\  \\ ⟹7 + h = 37 \\  \\ ⟹h = 37 - 7 \\  \\ ⟹h = 30

✺HENCE✺

  • The radius of CYCLINDER=7cm
  • The height of CYCLINDER=30cm

\boxed{\green{\sf{\ \ {\tex{ANSWER=> r=7 ,h=30}}}}}

Answered by nigaranjum18
7

\huge\underline\purple{Solution:}

\sf{Given=\begin{cases}The\:sum\:of\:r+h=37\\T.S.A=1628\end{cases}}

\sf{\implies 2\pi\:r(h+r)=1628}

\sf{\implies 2*\dfrac{22}{7}*r*37=1628}

\sf{\implies \dfrac{2*22*r*37}{7}=1628}

\sf{\implies r=\dfrac{1628*7}{2*22*37}}

\sf\green{\implies R=7cm}

\sf{\implies Now,\: putting\:the\: value}

\sf{\implies r+h=37}

\sf{\implies 7+h=37}

\sf{\implies h=37-7}

\sf{\implies h=30}

Therefore,

\sf\red{\implies Radius\:of\: cylinder=7cm}

\sf\green{\implies Height\:of\: cylinder=30cm}

Similar questions