Math, asked by Mister360, 2 months ago

The sum of the radius of base and height of a solid right circular cylinder is 37 cm. If the total surface area of the solid cylinder is 1628 sq. cm, find the volume of the cylinder.

Answers

Answered by OtakuSama
28

Question:-

The sum of the radius of base and height of a solid right circular cylinder is 37 cm. If the total surface area of the solid cylinder is 1628 sq. cm, find the volume of the cylinder.

Required Answer:-

Given:-

 \\  \sf{ \rightarrow{Sum \: of \: the \: radius \: of \: radius \: and \: height \: is \: 37cm}}

 \sf{ \rightarrow{Total \: surface \: area \: of \: the \: cylinder \: is \: 1628sq.cm.}} \\  \\

To Find:-

 \\  \sf{ \rightarrow{Volume \: of \: the \: cylinder}} \\  \\

Solution:-

Here, we are given, sum of the radius (r) and height (h) is 37cm

 \\   \therefore{ \bold{r + h} =  \sf{37cm}} \\  \\

Again, total surface area of the right circular cylinder is 1628sq.cm.

As we know that,

 \\  \sf{Total \: surface \: area \: of \: cylinder = 2\pi r(r + h) }\\  \\

According to the question,

 \\  \pmb{2\pi r(r + h) = 1628}

  \\ \sf{ \implies{2\pi r  \times 37 = 1628}} \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \rm{ \because{(r + h) = 37}}}

 \\  \sf{ \implies{2\pi r =  \frac{1628}{37} }}

 \\  \sf{ \implies{r =  \frac{1628}{37 \times 2 \times  \frac{22}{7} } }}

 \\  \sf{ \therefore{ \bold{r = 7}}}

Hence,

  \\ \sf{ \pmb{r + h = 37}}

 \\  \sf{ \implies{7 + h = 37}}

  \\  \sf{ \implies{h = 37 - 7}}

  \\  \sf{ \therefore{ \bold{h = 30}}}

 \\  \rm{ Hence \: radius \: of \: the \: cylinder \: is \:  \bold{7cm} \: and \: the \: height \: is \:  \bold{30cm}} \\  \\

Now, we know that,

 \\  \underline{ \boxed{ \pmb{ \blue{Volume \: of \: cylinder = \pi {r}^{2} h}}}} \\  \\

Therefore,

  \\  \sf{Volume \: of \: the \: cylinder =  \bold{ \frac{22}{7}  \times  {(7cm)}^{2}  \times 30cm}}

\\  \sf{ \implies{Volume \: of \: the \: cylinder =   \bold{( \frac{22}{7}  \times  {7}^{2}  \times 30) {cm}^{3} }}}

 \\  \sf{ \therefore{Volume \: of \: the \: cylinder =   \bold{ \red{4620cm {}^{3} }}}} \\  \\

 \\  \underline{ \boxed{ \rm{ \green{Hence, \: the \: volume \: of \: the \: cylinder \: is \:  \bold{4620cm {}^{3} }}}}}

Answered by nancy359
16

\huge\bf{Question:-}

The sum of the radius of base and height of a solid right circular cylinder is 37 cm. If the total surface area of the solid cylinder is 1628 sq. cm, find the volume of the cylinder.

\huge\bf{Solution:-}

(Refer to attachment)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions