Math, asked by qa25102003, 1 year ago

The sum of the radius of the base and height of a cylinder is 37 M if the total surface area of the solid cylinder is 1628m square find the volume of the cylinder

Answers

Answered by BrainlyVirat
4
Here's the answer

Let 'r' and 'h' be the radius and height of the solid cylinder respectively.

Given, r + h = 37 cm    

Total surface area of the cylinder = 1628 cm2.. Given

∴ 2 πr (r + h) = 1628 cm2

➡️ 2 πr × 37 cm = 1628 cm2

 \sf{  2 × 22/7 × r × 37 = 1528 cm {}^{2} }

 \sf{r =  \frac{1628 \times 7}{2 \times 22 \times 37}}

 \sf{r = 7 \: cm}

r + h  = 37 cm 

➡️ 7 + h = 37

➡️ h = 37 – 7

➡️ 30 cm

 \sf{Volum e  \: \:  of \:  \:  cylinder  = \pi \: r {}^{2} h}

 \sf{ =  \frac{22}{7} \times  {7}^{2}   \times 30}

 \sf{ =  \frac{22}{7}  \times 7 \times 7 \times 30}

 \sf{ = 22 \times 7 \times 30}

 \sf{ = 4620 \: cm {}^{3}}

Hence,

Volume of cylinder = 4620 cu.cm.

_______________________________

Thanks !
Similar questions