Math, asked by yashrai521, 6 months ago

The sum of the reciprocals of three numbers in H.P. is 12 and the product of the numbers is 1÷48
Find the numbers.​

Answers

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ three \: requried \: numbers \: in \: HP \\  \\ so \: let \: the \: three \: numbers \: in \: HP \: be \\  \frac{1}{a - d \: }  \: , \frac{1}{a}  \: , \:  \frac{1}{a + d}  \\  \\ since \: they \: are \: in \: HP \\ a - d \: , \: a, \: a + d \: are \: in \: AP \\  \\ according \: to \: first \: condition \\ a - d + a + a + d = 12   \\ 3a =1 2 \\  a = 4 \\  \\ according \: to \: second \: condition   \\  \frac{1}{a}  \times  \frac{1}{a - d}  \times  \frac{1}{a + d}  =  \frac{1}{48}  \\  \\  \frac{1}{4}  \times  \frac{1}{a {}^{2}  - d {}^{2} }  =  \frac{1}{48}  \\  \\  \frac{1}{a {}^{2} - d {}^{2}  }  =  \frac{1}{12}  \\  \\ applying \: invertendo \\ we \: get \\  \\ a {}^{2}  - d {}^{2}  = 12  \\  \\ d {}^{2}  = a {}^{2}  - 12 \\  \\  = (4) {}^{2}  - 12 \\  \\  = 16 - 12 \\  \\d {}^{2}   = 4 \\  \\ taking \: square \: roots \: on \: both \: sides \\ we \: get \\  \\ d = 2 \:  \: or \:  \: d =  - 2

so \: if \: we \: take \: d = 2 \\ then \: required \: numbers \: are \\  \\  \frac{1}{a - d}  =  \frac{1}{4 - 2}  =  \frac{1}{2}  \\  \\  \frac{1}{a}  =  \frac{1}{4}  \\  \\  \frac{1}{a + d}  =  \frac{1}{4 + 2}  =  \frac{1}{6}

if \: we \: take \: d =  - 2 \\ then \: required \: numbers \: are \\  \\  \frac{1}{a - d}  =  \frac{1}{4 - ( - 2)}  =  \frac{1}{4 + 2}  =  \frac{1}{6}  \\  \\  \frac{1}{a}  =  \frac{1}{4}  \\  \\  \frac{1}{a + d}  =  \frac{1}{4 + ( - 2)}  =  \frac{1}{4 - 2}  =  \frac{1}{2}

Similar questions