the sum of the reciprocals of two consecutive odd number is 12/35. find those numbers
Answers
Answered by
110
Here your answer goes
Step :- 1
Let two Consecutive odd integer be x and x +2
Step :- 2
According to Question :-
⇒
⇒
⇒
⇒
⇒
⇒ x = 5 and
We neglect
So , x = 5
x +2
5 + 2
= 7
Therefore , two numbers is 5 and 7
Verification :-
⇒
⇒
===============================
Be Brainly
Together we go far →→
FuturePoet:
Hope it is helpful to you !
Answered by
60
нєуα
нєяє ιѕ тнє αиѕωєя
ℓєт тнє иυмвєяѕ вє χ αи∂ χ + 2.
α/q

6χ + 7 = 0 αи∂ χ - 5 = 0
χ = -7/6 αи∂ χ = 5
иєgℓє¢тιиg χ = -7/6, ωє gєт,
χ = 5.
χ + 2 = 5 + 2 = 7.
нєи¢є, тнє иυмвєяѕ αяє 5 αи∂ 7.
нσρє тнιѕ нєℓρѕ.
нєяє ιѕ тнє αиѕωєя
ℓєт тнє иυмвєяѕ вє χ αи∂ χ + 2.
α/q
6χ + 7 = 0 αи∂ χ - 5 = 0
χ = -7/6 αи∂ χ = 5
иєgℓє¢тιиg χ = -7/6, ωє gєт,
χ = 5.
χ + 2 = 5 + 2 = 7.
нєи¢є, тнє иυмвєяѕ αяє 5 αи∂ 7.
нσρє тнιѕ нєℓρѕ.
Similar questions