the sum of the remainders obtained when(xka square+(k+8)x+k)is divided by (x-2) or whenit is divided by (x +1)is 0. find k
Answers
Answered by
0
Step-by-step explanation:
((xk)2+(k+8)x+k)
x-2=0
x=2
in the place of X substitute 2
so it will be
((2k)2+(k+8)2+k)
4ksquare+2k+16+k=0
4k square +2k+k+16=0
4K square +3K=16-----1equation
X + 1 equal to 0
x=-1
(2ksquare)-1+(k+8)-1+k
-2ksquare-k-8+k=0
-2ksquare=8-----------2equation
4k^2+3k=16. *-2
-2k^2+0=8. *4
-8k^2-6k=-32
-8k^2+0=32
(+)
8 k the whole square gets cancelled
-6k=-32-32
-*-=+
hence here
-6k=64
k=64/-6
10.666
-10.67 answer
Similar questions