Math, asked by khushi15686, 5 days ago

The sum of the series

1 + 3 + 6 + 10 +  -  -  - n \: terms
is ______​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given series is

\rm \:S_{n}  = 1 + 3 + 6 + 10 +  -  -  -  -  \: n \: terms

can be rewritten as

\rm \: S_{n} = 1 + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) +  -  -  -  -  \: n \: terms

So, nth term of the series is

\rm \: T_{n} = 1 + 2 + 3 +  -  -  -  + n \\

\rm \: T_{n} = \displaystyle\sum_{k=1}^n\rm k \:  =  \: \dfrac{n(n + 1)}{2}

\rm\implies \:T_{n} = \dfrac{1}{2} \bigg( {n}^{2} + n \bigg)

Now,

\rm \: S_{n} = T_{1} + T_{2} + T_{3} +  -  -  -  + T_{n} \\

\rm \: S_{n} = \displaystyle\sum_{k=1}^n\rm T_{k}

\rm \: S_{n} = \displaystyle\sum_{k=1}^n\rm \dfrac{1}{2} \bigg( {k}^{2} + k  \bigg)

\rm \: S_{n} = \dfrac{1}{2} \displaystyle\sum_{k=1}^n\rm  \bigg( {k}^{2} + k  \bigg)

\rm \: S_{n} = \dfrac{1}{2}\bigg(\dfrac{n(n + 1)(2n + 1)}{2}  + \dfrac{n(n + 1)}{2} \bigg)

\rm \: S_{n} = \dfrac{n(n + 1)}{4}\bigg(\dfrac{2n + 1}{3}  + 1 \bigg)

\rm \: S_{n} = \dfrac{n(n + 1)}{4}\bigg(\dfrac{2n + 1 + 3}{3} \bigg)

\rm \: S_{n} = \dfrac{n(n + 1)}{4}\bigg(\dfrac{2n + 4}{3} \bigg)

\rm \: S_{n} = \dfrac{n(n + 1)}{4}\bigg(\dfrac{2(n + 2)}{3} \bigg)

\rm\implies \:\rm \: S_{n} = \dfrac{n(n + 1)(n + 2)}{6} \\

\rule{190pt}{2pt}

Formulae Used :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle\sum_{k=1}^n\rm k \:  =  \: \dfrac{n(n + 1)}{2} }\\ \\ \bigstar \: \bf{\displaystyle\sum_{k=1}^n\rm  {k}^{2}  \:  =  \: \dfrac{n(n + 1)(2n + 1)}{6} }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions