Math, asked by schoolclean4780, 1 year ago

the sum of the square of the first n natural numbers is 285 while the sum of the cubes is 2025 find the value of n

Answers

Answered by MaheswariS
6

Answer:

The value of n is 9

Step-by-step explanation:

The sum of the square of the first n natural numbers is 285 while the sum of the cubes is 2025 find the value of n

\text{Formula used:}

1^2+2^2+...........+n^2=\frac{n(n+1)(2n+1)}{6}

1^3+2^3+...........+n^3=[\frac{n(n+1)}{2}]^2

\text{Given:}

1^2+2^2+...........+n^2=285

\frac{n(n+1)(2n+1)}{6}=285......(1)

\text{Also,}

1^3+2^3+...........+n^3=2025

\implies\:[\frac{n(n+1)}{2}]^2=2025

\implies\:\frac{n(n+1)}{2}=\sqrt{2025}

\implies\:\frac{n(n+1)}{2}=45

\implies\:n^2+n-90=0

\implies\:(n+10)(n-9)=0

\implies\:n=-10,9

\text{But n cannot be negative}

\therefore\:\bf{n=9}

Similar questions