Math, asked by harshalip525, 9 months ago

the sum of the square of two consecutive natural numbers is113 find the numbers​

Answers

Answered by amankumaraman11
2

Let the 1st number be x & 2nd number be (x + 1).

 \large {x}^{2}  +  {(x + 1)}^{2}  = 113 \\  =  >  {x}^{2}  +  {x}^{2}  + 2x + 1 = 113 \\ =  >  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   {2x}^{2}  + 2x = 113 - 1 \\ =  >  2 {x}^{2}  + 2x - 112 = 0 \\  =  > 2( {x}^{2}  + x - 56) = 0 \\ =  >   \:  \:  \:  \:  \:  \:  {x}^{2}  + x - 56 =  \frac{0}{2}  \\  \\  =  >  {x}^{2}  + x - 56 = 0 \\  =  >  {x}^{2}  + 8x - 7x - 56 = 0 \\  =  > x(x + 8) - 7(x + 8) = 0 \\  =  > (x + 8)(x - 7) = 0 \\  \\  \therefore \:  \: \:  \:  \:  x =  \red7 \:  \:  \: or \:  \:  \: (  - 8)

Thus,

 \sf {1}^{st}  \:  \: \:  number =  \red8 \\  \sf  {2}^{nd}  \:  \: number =  \red9

Similar questions