Math, asked by chauhananupam29, 10 months ago

The sum of the squares of four
consecutive natural numbers is 294.
What is the sum of the numbers ?​

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\textsf{Sum of the squares of four consecutive}

\textsf{natural numbers is 294}

\underline{\textbf{To find:}}

\textsf{Sum of the four numbers}

\underline{\textbf{Solution:}}

\textsf{Let the consecutive of four natural numbers be}

\textsf{n,n+1,n+2 and n+3}

\textsf{As per given data,}

\mathsf{n^2+(n+1)^2+(n+2)^2+(n+3)^2=294}

\mathsf{n^2+(n^2+1+2n)+(n^2+4+4n)+(n^2+9+6n)=294}

\mathsf{4n^2+12n+14=294}

\mathsf{4n^2+12n-280=0}

\textsf{Divide by 4 on bothsides of the equation}

\mathsf{n^2+3n-70=0}

\mathsf{n^2+10n-7n-70=0}

\mathsf{n(n+10)-7(n+10)=0}

\mathsf{(n+10)(n-7)=0}

\mathsf{n=7,-10}

\textsf{Since n is a natural number, n can't be negative}

\implies\mathsf{n=7}

\textbf{The four numbers are 7,8,9 and 10}

\textbf{Sum of the numbers=7+8+9+10=34}

Similar questions