The sum of the squares of three numbers is 138, while the sum of their products taken two at a time is 131. Their sum is
Answers
Answered by
6
hi friend,
let a,b,c be the three numbers
→given a²+b²+c²=138
→ab+bc+ca=131
→let a+b+c=x
squaring on both sides, we get
→(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
=138+2(131)
=138+262=400
→x²=400
x=±20
so a+b+c=±20
I hope this will help u ;)
let a,b,c be the three numbers
→given a²+b²+c²=138
→ab+bc+ca=131
→let a+b+c=x
squaring on both sides, we get
→(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
=138+2(131)
=138+262=400
→x²=400
x=±20
so a+b+c=±20
I hope this will help u ;)
Answered by
3
let no = a,b,c
1st case ab +bc+ca =131
a^2+b^2+c^2=138
(a+b+c)^2= a^2+b^2+c^2 +2(ab+bc+ca)
(a+b+c)^2= 138+2×131
=138+262
=400
a+b+c = √400
20
1st case ab +bc+ca =131
a^2+b^2+c^2=138
(a+b+c)^2= a^2+b^2+c^2 +2(ab+bc+ca)
(a+b+c)^2= 138+2×131
=138+262
=400
a+b+c = √400
20
Similar questions