The sum of the squares of two consecutive multiples of 7 is 1225. Find the
multiples.
Answers
Answered by
16
Let the 2 consecutive multiples of 7 be 7x and 7(x + 1)
According to the Question;
(7x)² + (7(x + 1))² = 1225
⇒ 49x² + (7x + 7)² = 1225
⇒ 49x² + 49x² + 49 + 2(7x)(7) = 1225
⇒ 49x² + 49x² + 49 + 2(49)x = 1225
⇒ 49(x² + x² + 1 + 2x) = 1225
⇒ 49(2x² + 2x + 1) = 1225
⇒ 2x² + 2x + 1 = 1225 ÷ 49
⇒ 2x² + 2x + 1 = 25
⇒ 2x² + 2x + 1 - 25 = 0
⇒ 2x² + 2x - 24 = 0
⇒ 2(x² + x - 12) = 0
⇒ x² + x - 12 = 0 ÷ 2
⇒ x² + x - 12 = 0
Factorizing the above Equation
x² + 4x - 3x - 12 = 0
⇒ x(x + 4) - 3(x + 4) = 0
⇒ (x - 3)(x + 4) = 0
∴ x = 3 or -4
Multiples cannot be negative
So x = 3
Multiples are 7x and 7(x + 1)
7x = 7(3) = 21
7(x + 1) = 7(3 + 1) = 7(4) = 28
Hence the 2 consecutive Multiples are 21 and 28
Similar questions