Math, asked by sujalshukla16, 4 months ago

The sum of the squares of two consecutive
natural numbers is 41. Find the numbers.​

Answers

Answered by Anonymous
7

 \\  \\  \underline{ \underline{  \sf   \red{given : } }} \\  \\

  • The sum of the squares of two consecutive natural numbers is 41.

 \\  \\ \underline{ \underline{  \sf   \red{to \: find : } }} \\  \\

  • The two numbers.

 \\  \\ \underline{ \underline{  \sf   \red{solution : } }} \\  \\

Let the two numbers be (x) and (x+1) as they are consecutive.

Sum of there square is 41.

  \\   \implies\sf \:  {x}^{2}  + (x +  {1)}^{2}  = 41 \\    \\

By identity ,

 \\   \bigstar\boxed{ \bf \: ( {a +b )}^{2}  =  {a}^{2} +  {b}^{2}  + 2ab } \\

Here ,

  • a = x
  • b = 1

 \\

Puting values ,

 \\  \implies \sf \:  {x}^{2}  +  \{{x}^{2}  +  {1}^{2}  + 2(x)(1)  \}= 41 \\  \\  \implies \sf \:  {x}^{2}  +  {x}^{2}  + 1 + 2x = 41 \\  \\  \implies \sf \:  {2x}^{2}  + 2x - 40 = 0 \\   \\  \sf \: dividing \: whole \: equation \: by \:2... \\  \\  \implies \sf \:  {x}^{2}  + x - 20 = 0 \\  \\

Now , we will factorise the above equation by Splitting middle term.

 \\  \\  \implies \sf \:  {x}^{2}  + 5x - 4x - 20 = 0 \\  \\  \implies \sf \: x(x + 5) - 4(x + 5) = 0 \\  \\  \implies \sf \: (x - 4)(x + 5) = 0 \\  \\

Hence ,

 \\  \\  \sf \: (x -4 ) = 0 \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \: (x + 5) = 0 \\  \\   \boxed{\sf \: x = 4} \:  \:  \:  \:  \sf \: or \:  \:  \:  \:  \boxed{ \sf \: x =  - 5} \\  \\

But , according to the given data , numbers are natural. So, they cant be negative.

Hence , x = 4

ㅤㅤㅤㅤㅤㅤㅤㅤ

Numbers are :-

  • x = 4
  • x + 1 = 5

Hence , the numbers are 4 and 5.

Similar questions