Math, asked by vorasupan181, 9 months ago


The sum of the squares of two positive integers is 208. If the squares of the
larger is 18 times the smaller number, find the numbers.

Answers

Answered by rose1264
0

Answer:

I think your question is wrong pls check it ones

Answered by StylusMrVirus
31

\begin{gathered}\Large{\bf{\pink{\underline{LeT,}}}} \\ \end{gathered}

  • P & Q are two positive integers.

  • P is greater than Q.

\begin{gathered}\Large{\bf{\green{\underline{GiVeN,}}}} \\ \end{gathered}

  • The sum of the squares of two positive integers is 208.

\begin{gathered}\longmapsto\:\:\bf\blue{P^2\:+\:Q^2\:=\:208}--(1) \\ \end{gathered} </p><p>

\begin{gathered}\bf\red{And,} \\ \end{gathered}

  • The square of the larger number is 18 times to the smaller number.

\begin{gathered}\longmapsto\:\:\bf\orange{P^2\:=\:18Q\:}--(2) \\ \end{gathered}

\begin{gathered}\Large{\bf{\purple{\underline{To\:FiNd,}}}} \\ \end{gathered}

  • The numbers.

\begin{gathered}\Large{\bf{\pink{\underline{CaLcUlAtIoN,}}}} \\ \end{gathered}

↝ Putting the value of P² in equation (1), we get

\begin{gathered}:\implies\:\:\bf{18Q\:+\:Q^2\:=\:208} \\ \end{gathered}

\begin{gathered}:\implies\:\:\bf{Q^2\:+\:18Q\:-\:208\:=\:0} \\ \end{gathered} </p><p>

\begin{gathered}:\implies\:\:\bf{Q^2\:+\:26Q\:-\:8Q\:-\:208\:=\:0} \\ \end{gathered} </p><p>

\begin{gathered}:\implies\:\:\bf{Q\:(Q\:+\:26)\:-8\:(Q\:-\:26)\:=\:0} \\ \end{gathered}

\begin{gathered}:\implies\:\:\bf{(Q\:+\:26)\:(Q\:-\:8)\:=\:0} \\ \end{gathered}

\begin{gathered}:\implies\:\:\bf{Q\:+\:26\:=\:0\:~~~~or~~~~\:Q\:-\:8\:=\:0} \\ \end{gathered}

\begin{gathered}:\implies\:\:\bf{Q\:=\:-\:26\:~~~~or~~~~\:Q\:=\:8} \\ \end{gathered}

[NOTE ➛ It is given that both numbers are positive integers.]

\begin{gathered}:\implies\:\:\bf\orange{Q\:=\:8} \\ \end{gathered} </p><p>

\begin{gathered}\bf\red{Now,} \\ \end{gathered}

↝ Putting the value of Q in the equation (2), we get

\begin{gathered}:\implies\:\:\bf{P^2\:=\:18\times{8}\:} \\ \end{gathered}

\begin{gathered}:\implies\:\:\bf{P^2\:=\:144\:} \\ \end{gathered} </p><p>

\begin{gathered}:\implies\:\:\bf{P\:=\:\sqrt{144}\:} \\ \end{gathered}

\begin{gathered}:\implies\:\:\bf{P\:=\:\pm\:12\:} \\ \end{gathered} </p><p>

[NOTE ➛ It is given that number is a positive integer.]

\begin{gathered}:\implies\:\:\bf\green{P\:=\:12\:} \\ \end{gathered} </p><p>

</p><p>\begin{gathered}\Large\bf\blue{Therefore,} \\ \end{gathered}

The two positive integers are 12 & 8.

Similar questions