Math, asked by varalakshmi9253, 4 months ago

The sum of the squares of two positive integers is 208. If the square of the

larger number is 18 times the smaller number, find the numbers​

Answers

Answered by ItzArchimedes
128

x = 12 , y = 8

☯ Let the two numbers be x,y , and here let the great no. be x . So , by the given information ,

+ y² = 208 ...eq(1)

= 18y

So , now substituting = 18y in eq(1)

⇒ 18y + y² = 208

⇒ y² + 18y - 208 = 0

⇒ y² + 26y - 8y + 208 = 0

⇒ y ( y + 26 ) - 8 ( y + 26 ) = 0

⇒ ( y + 26 ) ( y - 8 ) = 0

y = - 26 or 8

Here , given that no.'s are positive , so here y = 8 . Now , finding x

→ x² = 18y

→ x = √(18y)

→ x = √(9×2)(y)

→ x = 3√(2y)

Now , substituting y = 8

=> x = 3√(2×8)

=> x = 3√16

=> x = 3√4²

=> x = 3 × 4

=> x = 12

Hence , x = 12 & y = 8 .


lucky1501: right
rainbowqueen986: great explanation
Anonymous: Nice dear mod ! (:
sainiinswag: Great Answer
Anonymous: Every answer " Superb "
Anonymous: Awesome
khageswar117: excellent
Mister360: Hilarious effort:)
MysteriousLadki: Yes.
Answered by DARLO20
197

\Large{\bf{\pink{\underline{Let,}}}} \\

  • P & Q are two positive integers.

  • P is greater than Q.

\Large{\bf{\green{\underline{GiVeN,}}}} \\

  • The sum of the squares of two positive integers is 208.

\longmapsto\:\:\bf\blue{P^2\:+\:Q^2\:=\:208}--(1) \\

\bf\red{And,} \\

  • The square of the larger number is 18 times to the smaller number.

\longmapsto\:\:\bf\orange{P^2\:=\:18Q\:}--(2) \\

\Large{\bf{\purple{\underline{To\:FiNd,}}}} \\

  • The numbers.

\Large{\bf{\pink{\underline{CaLcUlAtIoN,}}}} \\

Putting the value of P² in equation (1), we get

:\implies\:\:\bf{18Q\:+\:Q^2\:=\:208} \\

:\implies\:\:\bf{Q^2\:+\:18Q\:-\:208\:=\:0} \\

:\implies\:\:\bf{Q^2\:+\:26Q\:-\:8Q\:-\:208\:=\:0} \\

:\implies\:\:\bf{Q\:(Q\:+\:26)\:-8\:(Q\:-\:26)\:=\:0} \\

:\implies\:\:\bf{(Q\:+\:26)\:(Q\:-\:8)\:=\:0} \\

:\implies\:\:\bf{Q\:+\:26\:=\:0\:~~~~or~~~~\:Q\:-\:8\:=\:0} \\

:\implies\:\:\bf{Q\:=\:-\:26\:~~~~or~~~~\:Q\:=\:8} \\

[NOTE It is given that both numbers are positive integers.]

:\implies\:\:\bf\orange{Q\:=\:8} \\

\bf\red{Now,} \\

Putting the value of Q in the equation (2), we get

:\implies\:\:\bf{P^2\:=\:18\times{8}\:} \\

:\implies\:\:\bf{P^2\:=\:144\:} \\

:\implies\:\:\bf{P\:=\:\sqrt{144}\:} \\

:\implies\:\:\bf{P\:=\:\pm\:12\:} \\

[NOTE ➛ It is given that number is a positive integer.]

:\implies\:\:\bf\green{P\:=\:12\:} \\

\Large\bf\blue{Therefore,} \\

The two positive integers are 12 & 8.


MysteriousLadki: Excellency on heights, Meritorious ♥️
sainiinswag: No doubt! Perfect Answer!!
Anonymous: Beautifully presented, Superb ✌
BrainlyIAS: Very colorful :')
Anonymous: Perfection is the key awesome
khushi276a: hi
MysteriousLadki: Please, don't post irrelevant comment
Similar questions