Math, asked by Ojas3705, 5 months ago

The sum of the third and seventh term of an A.P. is 8. Then
the sum of the first nine terms of this progression is

Answers

Answered by mohinisuryawanshi10
1

Step-by-step explanation:

an =a+(n−1)d

∴a 3 =a+(3−1)d=a+2d

a7 =a+(7−1)d=a+6d

Given a 3 +a7 =6

∴(a+2d)+(a+6d)=6

⇒2a+8d=6

⇒a+4d=3....(1)

Also givena a3 ×a 7=8

∴(a+2d)(a+6d)=8

⇒(3−4d+2d)(3−4d+6d)=8 [Using (1)]

⇒(3−2d)(3+2d)=8

⇒9−4d 2=8

⇒4d ^2=1

⇒d ^2= 1 / 4

⇒d=± 1 /2

When d= 1 /2

a=3−4d=3−4× 1/2 =3−2=1

When d=− 1 /2

a=3−4d=3+4× -1 /2 =3+2=5

When a=1 & d= 1/2

S 16 = 16 / 2 [2×1+(16−1)× 1 /2 ]=8(2+ 15 / 2 )=4×19=76

When a=5 & d=−1 /2

S 16 = 16 / 2 [2×5+(16−1)×(− 1 /2 )]=8(10− 15/2 )=4×5=20

Thus, the sum of first 16 terms of the AP is 76 or 20.

Please mark.as brainliest

Do follow me

Similar questions