The sum of the third and seventh term of an A.P. is 8. Then
the sum of the first nine terms of this progression is
Answers
Answered by
1
Step-by-step explanation:
an =a+(n−1)d
∴a 3 =a+(3−1)d=a+2d
a7 =a+(7−1)d=a+6d
Given a 3 +a7 =6
∴(a+2d)+(a+6d)=6
⇒2a+8d=6
⇒a+4d=3....(1)
Also givena a3 ×a 7=8
∴(a+2d)(a+6d)=8
⇒(3−4d+2d)(3−4d+6d)=8 [Using (1)]
⇒(3−2d)(3+2d)=8
⇒9−4d 2=8
⇒4d ^2=1
⇒d ^2= 1 / 4
⇒d=± 1 /2
When d= 1 /2
a=3−4d=3−4× 1/2 =3−2=1
When d=− 1 /2
a=3−4d=3+4× -1 /2 =3+2=5
When a=1 & d= 1/2
S 16 = 16 / 2 [2×1+(16−1)× 1 /2 ]=8(2+ 15 / 2 )=4×19=76
When a=5 & d=−1 /2
S 16 = 16 / 2 [2×5+(16−1)×(− 1 /2 )]=8(10− 15/2 )=4×5=20
Thus, the sum of first 16 terms of the AP is 76 or 20.
Please mark.as brainliest
Do follow me
Similar questions