Math, asked by ramu26, 1 year ago

the sum of the third and seventh terms of an AP is 6 and their product is 8 find the sum of first sixteen terms of the AP

Answers

Answered by nitthesh7
21
a3+a7=6 ⇒a+2d+a+6d=6
               ⇒2a+8d=6
               ⇒a+4d=3                                    ..........1
also,  a3×a7=8  ⇒(a+2d)(a+6d)=8            ..........2

substituting a=3-4d in 2
3-4d+2d)(3-4d+6d)=8
         (3-2d)(3+2d)=8
               (3)²-(2d)²=8
                9-4d²=8
                  -4d²=8-9
                     d²=-1/-4
                     d=√1/√4   ⇒   d=+1/2,-1/2

if d=1/2 then                           I             if d=-1/2
           a+4d=3                        I                a+4d=3
      a+4×1/2=3                        I                 a+4×(-1/2)=3 
                  a=3-2   ⇒  a=1      I                                a=3+2  ⇒ a=5

Sn=n/2(2a+(n-1)d)                  

if a= 1 and d=1/2                     I          if a=5 and d=-1/2
S16=16/2(2(1)+15(1/2))             I         S16=16/2(2(5)+15(-1/2)) 
      =8(4+15)/2                        I                  =8(20-15)/2 
      =4(4+15)  ⇒ 76                 I                  =4(20-15)       ⇒   20

:) Hope this helps!!!!!!
Answered by Anonymous
7

\bf\huge\boxed{\boxed{\bf\huge\:Hello\:Mate}}}



\bf\huge Let\: the\: AP\: be\: a - 4d , a - 3d , a - 2d , a - d , a , a + d , a + 2d , a + 3 d



\bf\huge => a_{3} = a - 2d



\bf\huge => a_{7} = a - 2d



\bf\huge => a_{3} + a_{7} = a - 2d + a - 2d = 6



\bf\huge => 2a = 6



\bf\huge => a = 3 (Eqn 1)



\bf\huge Hence\: (a - 2d) (a + 2d) = 8



\bf\huge => a^2 - 4d^2 = 8



\bf\huge => 4d^2 = a^2 - 8



\bf\huge => 4d^2 = (3)^2 - 8 = 9 - 8 = 1



\bf\huge => d^2 = \frac{1}{4}

\bf\huge => d = \frac{1}{2}



\bf\huge\texttt Hence



\bf\huge S_{16} = \frac{16}{2} [2\times (a - 4d)+ (16 - 1)\times d]



\bf\huge => 8[2\times (3 - 4\times \frac{1}{2})+ 15\times \frac{1}{2}]



\bf\huge => 8[2 + \frac{15}{2}]= 8\times \frac{19}{2} = 76



\bf\huge => d = - \frac{1}{2}



\bf\huge Putting\:the\: Value\: of\: D  



\bf\huge S_{16} = \frac{16}{2} [2\times (a - 4d)+ (16 - 1)\times d]



\bf\huge => 8[2\times (3 - 4\times - \frac{1}{2})+ 15\times - \frac{1}{2}]



\bf\huge => 8[2\times 5 - \frac{15}{2}]



\bf\huge => 8 [ \frac{20 - 15}{2}]



\bf\huge => 8\times \frac{5}{2} = 20



\bf\huge Hence



\bf\huge S_{16} = 20 , 76



\bf\huge\boxed{\boxed{\:Regards=\:Yash\:Raj}}}


Similar questions