Math, asked by ananya9822, 1 year ago

The sum of the third and seventh terms of an AP is 6 and their product is 8. Find the sum of first

sixteen terms of the AP.

Answers

Answered by manisharawat0912
21

I hope it will help you.

Attachments:
Answered by Anonymous
28

  \huge\bf Question:-

The sum of the third and the seventh terms of an AP is 6 and their products is 8. Find the sum of first sixteen terms of the AP.

 \huge \bf \: Solution:-

Let the first term and the common difference of

the given AP be a and d, respectively.

According to the question,

Third term + Seventh term = 6

 \implies \:  \: \:    \bf \: [a \:  + (3 - 1) \: d \:  +  \: a + (7 - 1) \: d ]= 6

\:  \:  \:  \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  [\because  \: a_n \:  = a  \:  +  \:( n - 1) \: d]

 \implies \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \bf \:  \:  \: (a \:  +  \: 2d)  \:  +  \: (a \:  +  \: 6d) = 6

 \implies \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \bf \: 2a + 8d = 6

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \: a \:  +  \: 4d = 3 \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  ...(i)

 \bf \: and \: third \: term \times Seventh \: term \:  = 8

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \:( a  \: +  \: 2d)(a \:  + \:  6d) =8

 \implies \:  \:  \:  \bf  [(a + 4d) - 2d]  \: [(a + 4d) + 2d] = 8

 \implies \:  \:  \:  \:  \:  \bf \: (3 - 2d)(3 + 2d) = 8 \:  \:  \:  \:  \:  \:  \:  [using \: Eq. \: (i)]

 \implies \:  \:  \:  \:  \:  \:  \:  \bf \: 9 - 4d {}^{2}  = 8 \:  \:  \:  \:  \:  \:  \:  \:  [ \because \: (a - b) \: (a + b) = a {}^{2}  - b {}^{2} ]

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \: 4d {}^{2}  = 9 - 8

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf d {}^{2}  =  \:  \frac{1}{4} \\

 \implies \:  \:  \: \:  \:  \:   \:  \:  \:  \:  \bf d =    \: ± \frac{1}{2} \\

 \bf \: When, \: d \:  =  \:  \frac{1}{2} ,\: then \: from \: Eq. \: (i), \: we \: get \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \bf \: a + 4 \bigg( \frac{1}{2} \bigg) = 3 \\

 \implies \:  \:  \:  \bf a + 2 = 3

 \implies \:  \:  \:  \bf a = 3 - 2

 \implies \:  \:  \:  \bf a = 1

 \bf \: Now, \: sum \: of \: first \: sixteen \: terms \: of \: the \: AP,

 \bf \: s_16 \:  =  \:  \frac{16}{2}  \: [2a + (16 - 1) \: d] \:  \:  \:  \:  \bigg [ \because \: s_n \:  =  \:  \frac{n}{2} [2a + (n - 1) \: d] \bigg] \\

 \bf = 8  \:  [2a + 15d] = 8 \bigg [2(1) + 15 \bigg( \frac{1}{2} \bigg) \bigg] \:  \:  \:  \:  \bigg [ \because \: a = 1 \: d =  \frac{1}{2} \bigg] \\

 \bf \:  =  \: 8 \bigg(2 +  \frac{15}{2} \bigg) =  \: 8 \bigg( \frac{19}{2} \bigg)  = 76\\

 \bf \: When, \: d \:  =  -  \frac{1}{2} \: then \: from \: Eq. \: (i) ,\: we \: get \\

 \bf \: a + 4 \bigg(- \frac{1}{2} \bigg) = 3 \implies \: a -  = 3 \implies \: a = 5 \\

 \bf \: Now, \: sum \: of \: first \: sixteen \: terms \: of \: this \: AP, \:

 \bf \: s_16 \:   =  \: \frac{16}{2}  \: [2a + (16 - 1) \: d] \:  \:  \:  \:  \:  \:  \:  \bigg [ \because  \: \: s_n \:  =  \:  \frac{n} {2} \:  [2a + (n - 1) \: d] \bigg ] \\

 \bf \:  = 8 \: (2a + 15d)

 \bf \:  = 8 \bigg [2(5) + 15 \bigg( -  \frac{1}{2} \bigg) \bigg] = 8 \bigg(10 -  \frac{15}{2} \bigg) = 8 \bigg( \frac{5}{2} \bigg) = 20 \\

 \bf \: Hence, \: sum \: of \: first \: sixteen \: terms, \: s_1_6 \:  \bf{20} \: or \:  \bf{76}.

Similar questions