Math, asked by somilbhanot1234, 1 month ago

The sum of the three digits of a positive integer is 15 and these digits are in AP. The number

obtained by reversing the digits is 396 less than the original number. Find the number​

Answers

Answered by MaheswariS
13

\textbf{Given:}

\textsf{Sum of the 3 digits of a number is 15 and these digits are in A.P}

\textsf{The number obtained by reversing the digits is 396 less than the original number}

\textbf{To find:}

\textsf{The number}

\textbf{Solution:}

\textsf{Let the three digit number be 100x+10y+z}

\mathsf{Then,\;x+y+z=15}----------(1)

\textsf{Since x,y and z are in A.P,  we write}

\mathsf{y=x+d}

\mathsf{z=x+2d}

\mathsf{(1)\;becomes}

\mathsf{x+(x+d)+(x+2d)=15}

\mathsf{3x+3d=15}

\mathsf{x+d=5}

\implies\boxed{\mathsf{y=5}}

\mathsf{(1)\implies}

\mathsf{x+5+z=15}

\mathsf{x+z=10}--------------(2)

\textbf{Also,}

\mathsf{(100x+10y+z)-(100z+10y+x)=396}

\mathsf{99x-99z=396}

\mathsf{x-z=4}----------------(3)

\textbf{We solve (2) and (3)}

\mathsf{x+z=10}--------------(2)

\mathsf{x-z=4}----------------(3)

\mathsf{Adding,\;we\;get}

\mathsf{2x=14}

\implies\boxed{\mathsf{x=7}}

\mathsf{(2)\;\implies\;7+z=10}

\implies\boxed{\mathsf{z=3}}

\therefore\textsf{The required number is}

\mathsf{100(7)+10(5)+3}

\mathsf{700+50+3}

\implies\boxed{\mathsf{753}}

Similar questions