Math, asked by nidhi2312, 10 months ago

The sum of the three natural numbers in an AP is 75 and the sum of their squares is 1893. What is the smallest of the three numbers​

Answers

Answered by codiepienagoya
4

Given:

The sum of three natural number = 75

there square =1893

To find:

number=?

Solution:

let given number= (a-d), a, (a+d)

\Rightarrow \bold{(a-d)+a+(a+d)= 75}\\\\\Rightarrow (a-d+a+a+d)= 75\\\\\Rightarrow (a+a+a)= 75\\\\\Rightarrow 3a= 75\\\\\Rightarrow a= \frac{75}{3}\\\\\Rightarrow a=  25 \\\\

\Rightarrow \bold{(a-d)^2+a^2+(a+d)^2=1893}\\\\\Rightarrow a^2+d^2-2ad+a^2+a^2+d^2+2ad=1893\\\\\Rightarrow a^2+d^2+a^2+a^2+d^2=1893\\\\\Rightarrow 3a^2+2d^2=1893\\\\\Rightarrow 3(25)^2+2d^2=1893\\\\\Rightarrow 3\times 625+2d^2=1893\\\\\Rightarrow 1,875+2d^2=1893\\\\\Rightarrow 2d^2=1893-1,875\\\\\Rightarrow 2d^2= 18\\\\\Rightarrow d^2= 9\\\\\Rightarrow d^2= 3^2\\\\\Rightarrow d= 3\\\\

The calculated number:

\Rightarrow (a-d), a,(a+d)\\\\\Rightarrow (25-3), 25,(25+3)\\\\\Rightarrow 22, 25, 28 \\\\

The final value is 22, 25, 28

Answered by abhi569
5

Answer:

22

Step-by-step explanation:

Let the required numbers are a - d, a, a + d.

   Their sum = 75       [given]

⇒ (a - d) + a + (a + d) = 75

⇒ 3a = 75

⇒ a = 25

Given,    sum of their squares is 1893

⇒ (a - d)² + a² + (a + d)² = 1893

(a - d)² + (a + d)² + a² = 1893

⇒ 2(a² + d²) + a² = 1893

⇒ 3a² + 2d² = 1893

⇒ 2d² = 1893 - 3(25)²            [a = 25]

⇒ d² = 9

⇒ d = 3   or   -3

   Therefore,  the given AP is

a - d = 25 - 3       or  25 - (-3)

        = 22            or    28

a = 25

a + d = 25 + 3     or  25 - 3

        = 28         or 22

Hence the AP is 22, 25, 28  or  28, 25, 22.   In both the cases, smallest term number is 22

Similar questions