Math, asked by bdjsbsibsuw, 5 months ago

The sum of the two digit number is 11. The number obtained by adding 4 to this number is 41 less than the reversed number. Find the original number​

Answers

Answered by Anonymous
15

━━━━━━━━━━━━━━━━━━━━━

✬ Original Number = 38 ✬

Correct Question: The sum of the digits of a 2-digit number is 11. The number obtained by adding 4 to this number is 41 less than the reversed number. Find the original number.

━━━━━━━━━━━━━━━━━━━━━

Given:

Sum of two digits number is 11.

Number obtained by adding 4 to original number is 41 less than reversed.

To Find:

What is the original number ?

Sooution: Let tens digit be x and ones be y. Therefore original number will be 10x + y.

\bold{Tens + Ones = 11}

\bold{x + y = 11}

\bold{x = 11 – y.....(1)}

[ Now reversed number formed is ]

Reversed number = 10y + x

A/q

Number obtained by adding 4 to original number is 41 less than reversed number.

\implies{\rm }\bold{ 10x + y + 4 = 10y + x – 41}

\implies{\rm } \bold{10x – x + y – 10y = – 41 – 4}

\implies{\rm } \bold{9x – 9y = – 45}

\implies{\rm }\bold{9(x – y) = – 45}

\implies{\rm } \bold{x – y = – 5}

\implies{\rm }\bold{11 – y = – 5 + y}

\implies{\rm } \bold{11 + 5 = y + y}

\implies{\rm }\bold{16 = 2y}

\implies{\rm } \bold{8 = y}

So, the digits of number are

\bold{One's digit is y = 8}

\bold{Tens digit is x = 11 – 8 = 3}

Hence, the original number is :-\bold{ 10x + y = 10(3) + 8 = 38}

\large\red{\underline{{\boxed{\textbf{so the original number is = 38}}}}}

━━━━━━━━━━━━━━━━━━━━━━

Similar questions